A384921 Number of permutations [p_1, p_2, ..., p_n], for n >= 1, with |p_{i+1} - p_i| >= 2, for i = 1..n-1, and |p_n - p_1| = 0 or 1.
1, 0, 0, 2, 4, 30, 184, 1322, 10668, 96566, 969280, 10690146, 128527348, 1673257262, 23451539784, 352079626010, 5637207651004, 95886993887142, 1726775043225808, 32821564079286866, 656647922936247300, 13793480376190668446
Offset: 1
Examples
n=1: The permutation is [1]. n=4: The two king permutations are [2, 4, 1, 3] and its reversal [3, 1, 4, 2]. n=5: The four permutations are [2,,4, 1, 5, 3], [3, 1, 5, 2, 4] and their reversals [3, 5, 1, 4, 2], [4, 2, 5, 1, 3]. See III of the Abramson and Moser link, p. 1254. n=6: The 30 permutations are (in short cut version): 146352, 153642, 246153, 251463, 264153, 315264, 351624, 352614, 361524, 362514, 413625, 426135, 426315, 524136, 531426, and their reversals.
Links
- M. Abramson and W. O. J. Moser, Permutations without rising or falling w-sequences, Ann. Math. Stat., 38 (1967), 1245-1254, p. 1254, III.
Comments