cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384923 a(n) is the smallest number of leading significant digits of the square root of the n-th nonsquare that includes all decimal digits.

This page as a plain text file.
%I A384923 #17 Jul 02 2025 03:26:32
%S A384923 19,23,37,39,45,36,27,17,25,15,36,19,20,36,25,37,28,13,27,52,39,17,38,
%T A384923 27,26,17,23,24,37,19,25,26,26,41,58,57,25,12,25,22,24,19,33,48,23,41,
%U A384923 49,23,32,32,23,30,19,17,31,27,24,47,24,26,18,22,19,48,31,22
%N A384923 a(n) is the smallest number of leading significant digits of the square root of the n-th nonsquare that includes all decimal digits.
%C A384923 Squares are excluded by definition because a(n) would only exist for positive integers s that include all decimal digits. The smallest square s^2 for which a(n) would exist is 1023456789^2 = 1047463798950190521.
%H A384923 Felix Huber, <a href="/A384923/b384923.txt">Table of n, a(n) for n = 1..10000</a>
%H A384923 Wikipedia, <a href="https://en.wikipedia.org/wiki/Significant_figures">Significant Figures</a>
%F A384923 a(n) >= max(10, A384924(n)).
%F A384923 a(A113507(k) - floor(sqrt(A113507(k)))) = 10 for positive integers k.
%e A384923 The leading 19 significant digits of sqrt(2) are [1, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0, 9, 5, 0, 4, 8]. These digits include all decimal digits, with the digit '8' appearing for the first time at position 19. Since 2 is the first nonsquare, it follows that a(1) = 19.
%p A384923 A384923:=proc(n)
%p A384923     local m,b,k;
%p A384923     m:=n+floor(1/2+sqrt(n));
%p A384923     b:=floor(log10(sqrt(m)));
%p A384923     k:=9-b;
%p A384923     while nops(convert(ListTools:-Reverse(convert(floor(10^k*sqrt(m)),'base',10)),set))<10 do
%p A384923         k:=k+1
%p A384923     od;
%p A384923     return k+b+1
%p A384923 end proc;
%p A384923 seq(A384923(n),n=1..66);
%o A384923 (Python)
%o A384923 from itertools import count
%o A384923 from math import isqrt
%o A384923 def A384923(n):
%o A384923     m = n+(k:=isqrt(n))+(n>k*(k+1))
%o A384923     return 1+next(n for n in count(9) if len(set(str(isqrt(10**(n<<1)*m))))==10) # _Chai Wah Wu_, Jul 01 2025
%Y A384923 Cf. A000037, A000196, A003285, A061845, A113507, A384924.
%K A384923 nonn,base
%O A384923 1,1
%A A384923 _Felix Huber_, Jun 26 2025