This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384924 #17 Jul 07 2025 15:43:30 %S A384924 14,5,5,17,11,16,10,10,6,3,36,12,6,7,13,37,16,4,26,52,2,12,6,9,11,13, %T A384924 16,14,4,5,2,8,18,10,3,4,12,10,3,20,9,6,2,48,6,4,49,11,32,13,9,15,19, %U A384924 4,5,21,2,5,24,17,3,6,19,16,5,3,4,11,17,7,19,9,2,4,16 %N A384924 a(n) is the position of the first occurrence of the digit 0 among the leading significant decimal digits of the square root of the n-th nonsquare. %H A384924 Felix Huber, <a href="/A384924/b384924.txt">Table of n, a(n) for n = 1..10000</a> %H A384924 Wikipedia, <a href="https://en.wikipedia.org/wiki/Significant_figures">Significant Figures</a> %F A384924 2 <= a(n) <= A384923(n). %e A384924 The leading 14 significant digits of sqrt(2) are [1, 4, 1, 4, 2, 1, 3, 5, 6, 2, 3, 7, 3, 0], with the digit '0' appearing for the first time at position 14. Since 2 is the first nonsquare, it follows that a(1) = 14. %p A384924 A384924:=proc(n) %p A384924 local m,b,k; %p A384924 m:=n+floor(1/2+sqrt(n)); %p A384924 b:=floor(log10(sqrt(m))); %p A384924 k:=1-b; %p A384924 while not member(0,ListTools:-Reverse(convert(floor(10^k*sqrt(m)),'base',10))) do %p A384924 k:=k+1 %p A384924 od; %p A384924 return k+b+1 %p A384924 end proc; %p A384924 seq(A384924(n),n=1..75); %t A384924 b[n_] := (n + Floor[Sqrt[n + Floor[Sqrt[n]]]]);a[n_]:=Position[RealDigits[N[Sqrt[b[n]],100]][[1]],0][[1]];Array[a,75]//Flatten (* Increase precision for n>23000 *) (* _James C. McMahon_, Jul 05 2025 *) %o A384924 (Python) %o A384924 from itertools import count %o A384924 from math import isqrt %o A384924 def A384924(n): %o A384924 m = n+(k:=isqrt(n))+(n>k*(k+1)) %o A384924 return 1+next(n for n in count(1) if not isqrt(10**(n<<1)*m)%10) # _Chai Wah Wu_, Jul 01 2025 %Y A384924 Cf. A000037, A000196, A003285, A113507, A384923. %K A384924 nonn,base %O A384924 1,1 %A A384924 _Felix Huber_, Jun 26 2025