A384928 Number of 2-dense sublists of divisors of the n-th triangular number.
1, 1, 2, 1, 2, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 2, 5, 6, 3, 1, 5, 4, 1, 1, 5, 6, 1, 4, 5, 6, 1, 1, 5, 6, 1, 2, 3, 6, 1, 2, 7, 8, 3, 1, 3, 4, 1, 1, 5, 6, 3, 4, 7, 3, 1, 1, 5, 4, 1, 2, 3, 8, 1, 1, 7, 8, 3, 3, 5, 6, 1, 2, 3, 6, 1, 4, 5, 8, 1, 1, 7, 4, 1, 1, 7, 6, 1, 4, 5, 3, 3, 3, 5, 8, 1, 2, 5, 5, 1, 6
Offset: 0
Keywords
Examples
For n = 5 the 5th triangular number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(5) = 3. For n = 12 the 12th triangular number is 78. The list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78], so a(12) = 2. Note that 78 is also the first practical number A005153 not in the sequence of the 2-dense numbers A174973.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
A384928[n_] := Length[Split[Divisors[PolygonalNumber[n]], #2 <= 2*# &]]; Array[A384928, 100, 0] (* Paolo Xausa, Aug 14 2025 *)
Comments