cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384928 Number of 2-dense sublists of divisors of the n-th triangular number.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 4, 1, 1, 3, 4, 1, 2, 3, 4, 1, 2, 5, 6, 3, 1, 5, 4, 1, 1, 5, 6, 1, 4, 5, 6, 1, 1, 5, 6, 1, 2, 3, 6, 1, 2, 7, 8, 3, 1, 3, 4, 1, 1, 5, 6, 3, 4, 7, 3, 1, 1, 5, 4, 1, 2, 3, 8, 1, 1, 7, 8, 3, 3, 5, 6, 1, 2, 3, 6, 1, 4, 5, 8, 1, 1, 7, 4, 1, 1, 7, 6, 1, 4, 5, 3, 3, 3, 5, 8, 1, 2, 5, 5, 1, 6
Offset: 0

Views

Author

Omar E. Pol, Aug 08 2025

Keywords

Comments

By definition a(n) is also the number of 2-dense sublists of divisors of the n-th generalized hexagonal number.
In a sublist of divisors of k the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of k.
The 2-dense sublists of divisors of k are the maximal sublists whose terms increase by a factor of at most 2.
Conjecture: all odd indexed terms are odd.

Examples

			For n = 5 the 5th triangular number is 15. The list of divisors of 15 is [1, 3, 5, 15]. There are three 2-dense sublists of divisors of 15, they are [1], [3, 5], [15], so a(5) = 3.
For n = 12 the 12th triangular number is 78. The list of divisors of 78 is [1, 2, 3, 6, 13, 26, 39, 78]. There are two 2-dense sublists of divisors of 78, they are [1, 2, 3, 6] and [13, 26, 39, 78], so a(12) = 2. Note that 78 is also the first practical number A005153 not in the sequence of the 2-dense numbers A174973.
		

Crossrefs

Cf. A000217, A005153, A174973 (2-dense numbers), A237271, A379288, A384149, A384222, A384225, A384226, A384930, A384931, A386984 (a bisection), A386989.

Programs

  • Mathematica
    A384928[n_] := Length[Split[Divisors[PolygonalNumber[n]], #2 <= 2*# &]];
    Array[A384928, 100, 0] (* Paolo Xausa, Aug 14 2025 *)

Formula

a(n) = A237271(A000217(n)) for n >= 1 (conjectured).