cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384930 Irregular triangle read by rows: T(n,k) is the sum of the terms of the (n-k+1)-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.

This page as a plain text file.
%I A384930 #86 Aug 28 2025 16:46:03
%S A384930 1,3,3,1,7,5,1,12,7,1,15,9,3,1,15,3,11,1,28,13,1,21,3,15,8,1,31,17,1,
%T A384930 39,19,1,42,21,7,3,1,33,3,23,1,60,25,5,1,39,3,27,9,3,1,56,29,1,72,31,
%U A384930 1,63,33,11,3,1,51,3,35,12,1,91,37,1,57,3,39,13,3,1,90,41,1,96,43,1,77,7,45,32,1
%N A384930 Irregular triangle read by rows: T(n,k) is the sum of the terms of the (n-k+1)-th 2-dense sublist of divisors of n, with n >= 1, k >= 1.
%C A384930 In a sublist of divisors of n the terms are in increasing order and two adjacent terms are the same two adjacent terms in the list of divisors of n.
%C A384930 The 2-dense sublists of divisors of n are the maximal sublists whose terms increase by a factor of at most 2.
%C A384930 At least for the first 1000 rows the row lengths coincide with A237271.
%C A384930 Note that if the conjectures related to the 2-dense sublists of divisors of n are true so we have that essentially all sequences where the words "part" or "parts" are mentioned having cf. A237593 are also related to the 2-dense sublists of divisors of n, for example the square array A240062.
%H A384930 Paolo Xausa, <a href="/A384930/b384930.txt">Table of n, a(n) for n = 1..12242</a> (rows 1..4000 of triangle, flattened).
%F A384930 T(n,k) = A384149(n,m+1-k), n >= 1, k >= 1, and m is the length of row n.
%F A384930 T(n,k) = 2*A237270(n,k) - A384149(n,k), n >= 1, k >= 1, (conjectured).
%e A384930   ---------------------------------------------------------------------
%e A384930   |  n |   Row n of       |  List of divisors of n        | Number of |
%e A384930   |    |   the triangle   |  [with sublists in brackets]  | sublists  |
%e A384930   ---------------------------------------------------------------------
%e A384930   |  1 |    1;            |  [1];                         |     1     |
%e A384930   |  2 |    3;            |  [1, 2];                      |     1     |
%e A384930   |  3 |    3, 1;         |  [1], [3];                    |     2     |
%e A384930   |  4 |    7;            |  [1, 2, 4];                   |     1     |
%e A384930   |  5 |    5, 1;         |  [1], [5];                    |     2     |
%e A384930   |  6 |   12;            |  [1, 2, 3, 6];                |     1     |
%e A384930   |  7 |    7, 1;         |  [1], [7];                    |     2     |
%e A384930   |  8 |   15;            |  [1, 2, 4, 8];                |     1     |
%e A384930   |  9 |    9, 3, 1;      |  [1], [3], [9];               |     3     |
%e A384930   | 10 |   15  3;         |  [1, 2], [5, 10];             |     2     |
%e A384930   | 11 |   11, 1;         |  [1], [11];                   |     2     |
%e A384930   | 12 |   28;            |  [1, 2, 3, 4, 6, 12];         |     1     |
%e A384930   | 13 |   13, 1;         |  [1], [13];                   |     2     |
%e A384930   | 14 |   21, 3;         |  [1, 2], [7, 14];             |     2     |
%e A384930   | 15 |   15, 8, 1;      |  [1], [3, 5], [15];           |     3     |
%e A384930   | 16 |   31;            |  [1, 2, 4, 8, 16];            |     1     |
%e A384930   | 17 |   17, 1;         |  [1], [17];                   |     2     |
%e A384930   | 18 |   39;            |  [1, 2, 3, 6, 9, 18];         |     1     |
%e A384930   | 19 |   19, 1;         |  [1], [19];                   |     2     |
%e A384930   | 20 |   42;            |  [1, 2, 4, 5, 10, 20];        |     1     |
%e A384930   | 21 |   21, 7, 3, 1;   |  [1], [3], [7], [21];         |     4     |
%e A384930   | 22 |   33, 3;         |  [1, 2], [11, 22];            |     2     |
%e A384930   | 23 |   23, 1;         |  [1], [23];                   |     2     |
%e A384930   | 24 |   60;            |  [1, 2, 3, 4, 6, 8, 12, 24];  |     1     |
%e A384930    ...
%e A384930 A conjectured relationship between a palindromic composition of sigma_0(n) = A000005(n) as n-th row of A384222 and the list of divisors of n as the n-th row of A027750 and a palindromic composition of sigma_1(n) = A000203(n) as the n-th row of A237270 and the diagram called "symmetric representation of sigma(n)" is as shown below with two examples.
%e A384930 .
%e A384930 For n = 10 the conjectured relationship is:
%e A384930   10th row of A384222.......................: [   2  ], [   2  ]
%e A384930   10th row of A027750.......................:   1, 2,     5, 10
%e A384930   10th row of A027750 with sublists.........: [ 1, 2 ], [ 5, 10]
%e A384930   10th row of A384149.......................: [   3  ], [  15  ]
%e A384930   10th row of this triangle.................: [  15  ], [   3  ]
%e A384930   10th row of the virtual sequence 2*A237270: [  18  ], [  18  ]
%e A384930   10th row of A237270.......................: [   9  ], [   9  ]
%e A384930 .
%e A384930 The symmetric representation of sigma_1(10) in the first quadrant is as follows:
%e A384930 .
%e A384930    _ _ _ _ _ _ 9
%e A384930   |_ _ _ _ _  |
%e A384930             | |_
%e A384930             |_ _|_
%e A384930                 | |_ _  9
%e A384930                 |_ _  |
%e A384930                     | |
%e A384930                     | |
%e A384930                     | |
%e A384930                     | |
%e A384930                     |_|
%e A384930 .
%e A384930 The diagram has two parts (or polygons) of areas  [9], [9] respectively, so the 10th row of A237270 is [9], [9] and sigma_1(10) = A000203(10) = 18.
%e A384930 .
%e A384930 For n = 15 the conjectured relationship is:
%e A384930   15th row of A384222.......................: [ 1], [  2  ], [ 1]
%e A384930   15th row of A027750.......................:   1,    3, 5,   15
%e A384930   15th row of A027750 with sublists.........: [ 1], [ 3, 5], [15]
%e A384930   15th row of A384149.......................: [ 1], [  8  ], [15]
%e A384930   15th row of this triangle.................: [15], [  8  ], [ 1]
%e A384930   15th row of the virtual sequence 2*A237270: [16], [ 16  ], [16]
%e A384930   15th row of A237270.......................: [ 8], [  8  ], [ 8]
%e A384930 .
%e A384930 The symmetric representation of sigma_1(15) in the first quadrant is as follows:
%e A384930 .
%e A384930    _ _ _ _ _ _ _ _ 8
%e A384930   |_ _ _ _ _ _ _ _|
%e A384930                   |
%e A384930                   |_ _
%e A384930                   |_  |_ 8
%e A384930                     |   |_
%e A384930                     |_ _  |
%e A384930                         |_|_ _ _ 8
%e A384930                               | |
%e A384930                               | |
%e A384930                               | |
%e A384930                               | |
%e A384930                               | |
%e A384930                               | |
%e A384930                               | |
%e A384930                               |_|
%e A384930 .
%e A384930 The diagram has three parts (or polygons) of areas [8], [8], [8] respectively, so the 15th row of A237270 is [8], [8], [8] and sigma_1(15) = A000203(15) = 24.
%e A384930 .
%e A384930 For the relationship with Dyck paths, partitions of n into consecutive parts and odd divisors of n see A237593, A235791, A237591 and A379630.
%t A384930 A384930row[n_] := Reverse[Total[Split[Divisors[n], #2 <= 2*# &], {2}]];
%t A384930 Array[A384930row, 50] (* _Paolo Xausa_, Aug 14 2025 *)
%Y A384930 Mirror of A384149.
%Y A384930 Row sums give A000203.
%Y A384930 Cf. A000105, A174973, A196020, A236104, A235791, A237270, A237271, A237591, A237593, A240062, A245092, A262626, A379288, A379630, A384222, A384225, A384226, A384227.
%K A384930 nonn,tabf,changed
%O A384930 1,2
%A A384930 _Omar E. Pol_, Jul 19 2025