cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384936 a(n) = Sum_{k=1..n} floor( log(A002110(n)) / log(prime(k)) ).

This page as a plain text file.
%I A384936 #9 Jun 18 2025 23:46:58
%S A384936 0,1,3,9,16,28,42,57,76,97,121,148,177,208,242,279,316,359,401,446,
%T A384936 493,545,596,651,708,767,829,893,958,1026,1096,1170,1246,1319,1400,
%U A384936 1484,1567,1657,1742,1834,1923,2021,2119,2218,2316,2419,2526,2635,2745,2857,2972
%N A384936 a(n) = Sum_{k=1..n} floor( log(A002110(n)) / log(prime(k)) ).
%C A384936 A384442(a(n)) = A002110(n) for n <= 8; does it hold for n > 5?
%H A384936 Michael De Vlieger, <a href="/A384936/b384936.txt">Table of n, a(n) for n = 0..10000</a>
%F A384936 a(n) = A361373(A002110(n)).
%F A384936 Row sums of A287010.
%e A384936 Table of n, a(n) for n = 0..10, listing terms in row n of A287010:
%e A384936       Terms in row n of A287010 corresponding
%e A384936       to the primes listed in the header
%e A384936  n\k   2   3   5   7  11  13  17  19  23  29   a(n)
%e A384936 ---------------------------------------------------
%e A384936  0:    0   .   .   .   .   .   .   .   .   .     0
%e A384936  1:    1   .   .   .   .   .   .   .   .   .     1
%e A384936  2:    2   1   .   .   .   .   .   .   .   .     3
%e A384936  3:    4   3   2   .   .   .   .   .   .   .     9
%e A384936  4:    7   4   3   2   .   .   .   .   .   .    16
%e A384936  5:   11   7   4   3   3   .   .   .   .   .    28
%e A384936  6:   14   9   6   5   4   4   .   .   .   .    42
%e A384936  7:   18  11   8   6   5   5   4   .   .   .    57
%e A384936  8:   23  14   9   8   6   6   5   5   .   .    76
%e A384936  9:   27  17  11   9   8   7   6   6   6   .    97
%e A384936 10:   32  20  14  11   9   8   7   7   7   6   121
%t A384936 P = 2; s = {2}; {0}~Join~Reap[Do[Sow@ Total@ Map[Floor@ Log[#, P] &, s]; (AppendTo[s, #]; P *= #) &[Prime[k]], {k, 2, 51}] ][[-1, 1]]
%o A384936 (PARI) a(n) = my(v=primes(n), pp=vecprod(v)); sum(k=1, n, log(pp)\log(v[k])); \\ _Michel Marcus_, Jun 14 2025
%Y A384936 Cf. A002110, A287010, A361373, A377485, A384442.
%K A384936 nonn,easy
%O A384936 0,3
%A A384936 _Michael De Vlieger_, Jun 12 2025