This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384939 #27 Jul 24 2025 05:48:25 %S A384939 5,11,17,24,29,35,42,48,53,60,66,72,77,84,90,96,102,108,114,121,126, %T A384939 132,139,145,151,156,163,169,175,181,187,193,200,205,211,218,224,229, %U A384939 235,242,248,253,260,266,272,279,284,290,297,303,308,314,321,327,332,339,345,351,357,363,369,375,381,387,393,400,406,411,418,424,430,436,442,448,454,460,466,472,479,484,326,497,503,508,515,521,527,532,539,545,551,558,563,569,576,582,587,594,600,606 %N A384939 Maximum element in the continued fraction for (1/n) * Sum_{k>=0} 1/3^(2^k). %H A384939 Jeffrey O. Shallit, <a href="http://dx.doi.org/10.1016/0022-314X(79)90040-4">Simple continued fractions for some irrational numbers</a>, J. Number Theory 11 (1979), no. 2, 209-217. %t A384939 m = 10; terms = 100; t1 = ConstantArray[0, 2*terms]; t2 = ConstantArray[1, 2*terms]; Until[t1 == t2, m++; PrintTemporary["m=",m]; s = Sum[1/3^(2^k), {k, 0, m}]; t1 = t2; t2 = Table[Max[ContinuedFraction[s/n]], {n, 1, 2*terms}]]; Take[t2, terms] %Y A384939 Cf. A004200, A078885, A081846. %K A384939 nonn %O A384939 1,1 %A A384939 _Vaclav Kotesovec_, Jul 22 2025