This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384940 #13 Jun 18 2025 00:53:55 %S A384940 9,4,15,6,21,10,25,14,33,22,35,26,39,34,49,38,51,46,55,58,57,62,65,74, %T A384940 69,82,77,86,85,94,87,106,91,118,93,122,95,134,111,142,115,146,119, %U A384940 158,121,166,123,178,129,194,133,202,141,206,143,214,145,218,155,226,159,254,161,262,169,274,177 %N A384940 Odd semiprimes interleaved with even semiprimes. %H A384940 Robert Israel, <a href="/A384940/b384940.txt">Table of n, a(n) for n = 1..10000</a> %F A384940 a(2*k-1) = A046315(k). %F A384940 a(2*k) = A100484(k). %e A384940 a(3) = A046315(2) = 15 is the second odd semiprime. %e A384940 a(4) = A100484(2) = 6 is the second even semiprime. %p A384940 A:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=1..1000,2)]): %p A384940 B:= select(t -> numtheory:-bigomega(t)=2, [seq(i,i=2..1000,2)]): %p A384940 seq(op([A[i],B[i]]),i=1..min(nops(A),nops(B))); %o A384940 (Python) %o A384940 from math import isqrt %o A384940 from sympy import primepi, primerange, prime %o A384940 def A384940(n): %o A384940 if n&1: %o A384940 m = n+1>>1 %o A384940 def bisection(f,kmin=0,kmax=1): %o A384940 while f(kmax) > kmax: kmax <<= 1 %o A384940 kmin = kmax >> 1 %o A384940 while kmax-kmin > 1: %o A384940 kmid = kmax+kmin>>1 %o A384940 if f(kmid) <= kmid: %o A384940 kmax = kmid %o A384940 else: %o A384940 kmin = kmid %o A384940 return kmax %o A384940 def f(x): return int(m+x+((t:=primepi(s:=isqrt(x)))*(t-1)>>1)-sum(primepi(x//k) for k in primerange(3, s+1))) %o A384940 return bisection(f,m,m) %o A384940 else: %o A384940 return prime(n>>1)<<1 # _Chai Wah Wu_, Jun 17 2025 %Y A384940 Cf. A001358, A046315, A100484 %K A384940 nonn,look %O A384940 1,1 %A A384940 _Zak Seidov_ and _Robert Israel_, Jun 13 2025