cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384952 Decimal expansion of the volume of an elongated pentagonal orthobirotunda with unit edge.

This page as a plain text file.
%I A384952 #7 Jun 20 2025 14:22:41
%S A384952 2,1,5,2,9,7,3,4,7,7,9,1,8,7,5,3,7,6,4,6,2,5,1,7,1,8,5,0,1,4,9,7,5,5,
%T A384952 7,2,2,7,0,9,8,5,0,7,3,7,7,7,4,3,8,0,3,9,5,3,0,3,2,0,9,9,4,8,7,9,3,3,
%U A384952 6,3,4,1,7,7,2,1,1,5,0,7,8,4,4,4,7,7,3,2,5,1
%N A384952 Decimal expansion of the volume of an elongated pentagonal orthobirotunda with unit edge.
%C A384952 The elongated pentagonal orthobirotunda is Johnson solid J_42.
%C A384952 Also the volume of an elongated pentagonal gyrobirotunda (Johnson solid J_43) with unit edge.
%H A384952 Paolo Xausa, <a href="/A384952/b384952.txt">Table of n, a(n) for n = 2..10000</a>
%H A384952 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_gyrobirotunda">Elongated pentagonal gyrobirotunda</a>.
%H A384952 Wikipedia, <a href="https://en.wikipedia.org/wiki/Elongated_pentagonal_orthobirotunda">Elongated pentagonal orthobirotunda</a>.
%F A384952 Equals (45 + 17*sqrt(5) + 15*sqrt(5 + 2*sqrt(5)))/6 = (45 + 17*A002163 + 15*sqrt(5 + A010476))/6.
%F A384952 Equals the largest root of 1296*x^4 - 38880*x^3 + 252360*x^2 - 329400*x - 332975.
%e A384952 21.52973477918753764625171850149755722709850737774...
%t A384952 First[RealDigits[(45 + 17*Sqrt[5] + 15*Sqrt[5 + Sqrt[20]])/6, 10, 100]] (* or *)
%t A384952 First[RealDigits[PolyhedronData["J42", "Volume"], 10, 100]]
%Y A384952 Cf. A179451 (surface area - 10), A344149 (surface area + 20).
%Y A384952 Cf. A002163, A010476, A384283, A384285, A384624, A384871, A384909, A384910.
%K A384952 nonn,cons,easy
%O A384952 2,1
%A A384952 _Paolo Xausa_, Jun 20 2025