This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384953 #13 Jun 14 2025 18:41:34 %S A384953 313,359,383,449,619,787,827,907,1697,2503,2521,2857,3673,3853,4139, %T A384953 4363,4993,5281,5527,5563,5641,5851,6037,6043,6719,7019,7477,9281, %U A384953 10177,10459,13799,14009,15013,15511,17167,17209,19183,19423,20483,20743,21397,21407,25111 %N A384953 First of three consecutive primes whose concatenations, both forward and backward, are primes. %H A384953 Robert Israel, <a href="/A384953/b384953.txt">Table of n, a(n) for n = 1..10000</a> %e A384953 a(3) = 383 is a term because 383, 389 and 397 are consecutive primes and both 383389397 and 397389383 are prime. %p A384953 rcat:= proc(L) local x,i; %p A384953 x:= L[1]; %p A384953 for i from 2 to nops(L) do %p A384953 x:= 10^(1+ilog10(x))*L[i] + x %p A384953 od; %p A384953 x %p A384953 end proc: %p A384953 fcat:= proc(L) local x,i; %p A384953 x:= L[1]; %p A384953 for i from 2 to nops(L) do %p A384953 x:= 10^(1+ilog10(L[i]))*x + L[i] %p A384953 od; %p A384953 x %p A384953 end proc: %p A384953 P:= select(isprime,[seq(i,i=3..30000,2)]): %p A384953 J:= select(i -> isprime(rcat(P[i..i+2])) and isprime(fcat(P[i..i+2])), [$1..nops(P)-2]): %p A384953 P[J]; %Y A384953 Cf. A030469, A104328. %K A384953 nonn,base %O A384953 1,1 %A A384953 _Robert Israel_, Jun 13 2025