cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384960 a(n) = smallest sphenic number k such that A010846(k) = n.

This page as a plain text file.
%I A384960 #12 Jul 11 2025 16:19:49
%S A384960 1001,105,231,30,42,70,110,66,78,170,102,114,138,370,174,826,222,246,
%T A384960 258,318,354,402,438,498,534,582,654,762,786,894,978,1038,1158,1338,
%U A384960 1506,1542,1758,1986,2082,2202,2334,2598,2922,3126,3462,3918,4098,4398,4614,5262
%N A384960 a(n) = smallest sphenic number k such that A010846(k) = n.
%C A384960 a(1) = A384000(3) = 1001; A010846(1001) = A024718(3) = 15; 1001 is the smallest number k with 3 distinct prime factors that has the smallest possible number of terms in row k of A162306, i.e., m <= k such that rad(m) | k.
%C A384960 For n > 30, 6 | a(n).
%H A384960 Michael De Vlieger, <a href="/A384960/b384960.txt">Table of n, a(n) for n = 15..300</a>
%H A384960 Michael De Vlieger, <a href="/A384960/a384960.png">Plot of terms k = p^a*q^b*r^c, primes p < q < r, in row a(n) of A162306</a>, n = 15..50, at (x,y,z) = (a,b,c). For a(n) there are n blocks in each diagram.
%H A384960 Michael De Vlieger, <a href="/A384960/a384960.txt">Mathematica code</a>.
%e A384960 Table of a(n) indicating prime factors and S, where S = {ceiling(log_p a(n))} for all primes p that divide a(n), in order of the magnitude of p.
%e A384960                                 Prime power factor
%e A384960                                     1111223344455
%e A384960  n  m=a(n) pi(facs(m))    S     23571379391713739
%e A384960 -------------------------------------------------
%e A384960 15   1001   4.5.6       4.3.3   ...111
%e A384960 16    105   2.3.4       5.3.3   .111
%e A384960 17    231   2.4.5       5.3.3   .1.11
%e A384960 18     30   1.2.3       5.4.3   111
%e A384960 19     42   1.2.4       6.4.2   11.1
%e A384960 20     70   1.3.4       7.3.3   1.11
%e A384960 21    110   1.3.5       7.3.2   1.1.1
%e A384960 22     66   1.2.5       7.4.2   11..1
%e A384960 23     78   1.2.6       7.4.2   11...1
%e A384960 24    170   1.3.7       8.4.2   1.1...1
%e A384960 25    102   1.2.7       7.5.2   11....1
%e A384960 26    114   1.2.8       7.5.2   11.....1
%e A384960 27    138   1.2.9       8.5.2   11......1
%e A384960 28    370   1.3.12      9.4.2   1.1........1
%e A384960 29    174   1.2.10      8.5.2   11.......1
%e A384960 30    826   1.4.17     10.4.2   1..1............1
%e A384960 31    222   1.2.12      8.5.2   11.........1
%e A384960 32    246   1.2.13      8.6.2   11..........1
%e A384960 33    258   1.2.14      9.6.2   11...........1
%e A384960 34    318   1.2.16      9.6.2   11.............1
%t A384960 (* See Mathematica code link for function definitions for kappaomega and theta *)
%t A384960 s =  kappaomega[3, 6000]; t = Map[theta, s];
%t A384960 Map[s[[FirstPosition[t, #][[1]] ]] &, Union[t]]
%Y A384960 Cf. A007304, A007947, A010846, A024718, A162306, A384000.
%K A384960 nonn
%O A384960 15,1
%A A384960 _Michael De Vlieger_, Jul 06 2025