This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384963 #10 Jun 15 2025 14:39:09 %S A384963 1,1,1,1,2,2,1,1,3,7,7,5,2,1,6,22,42,49,35,18,5,2,12,76,237,442,510, %T A384963 412,218,84,18,5,27,271,1293,3539,6205,7482,6318,3833,1623,485,88,14, %U A384963 65,1001,6757,25842,63254,106985,129782,115988,76582,37421,13111,3228,489,50 %N A384963 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces, n >= 1, k=1..max(1,2*n-4). %C A384963 Equivalently, T(n,k) is the number of unsensed simple planar maps with n vertices and k faces. %C A384963 The number of edges is n+k-2. %C A384963 Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table. %H A384963 Andrew Howroyd, <a href="/A384963/b384963.txt">Table of n, a(n) for n = 1..158</a> (rows 1..14) %H A384963 Gunnar Brinkmann and Brendan McKay, <a href="https://users.cecs.anu.edu.au/~bdm/papers/plantri-full.pdf">Fast generation of planar graphs (expanded edition)</a>, Tables 19-22. %e A384963 Triangle begins: %e A384963 1; %e A384963 1; %e A384963 1, 1; %e A384963 2, 2, 1, 1, %e A384963 3, 7, 7, 5, 2, 1; %e A384963 6, 22, 42, 49, 35, 18, 5, 2; %e A384963 12, 76, 237, 442, 510, 412, 218, 84, 18, 5; %e A384963 27, 271, 1293, 3539, 6205, 7482, 6318, 3833, 1623, 485, 88, 14; %e A384963 ... %Y A384963 Row sums are A372892. %Y A384963 Antidiagonal sums are A006395. %Y A384963 Columns 1..2 are A006082, A384967. %Y A384963 Cf. A277741 (not necessarily simple), A342060 (2-connected), A212438 (3-connected), A384850 (version by number of edges then vertices), A384964 (sensed version). %K A384963 nonn,tabf %O A384963 1,5 %A A384963 _Andrew Howroyd_, Jun 13 2025