This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384964 #8 Jun 15 2025 14:38:58 %S A384964 1,1,1,1,2,2,1,1,3,8,8,6,2,1,6,29,60,73,52,25,6,2,14,113,388,768,903, %T A384964 728,379,136,26,6,34,444,2303,6584,11782,14321,12113,7298,3048,872, %U A384964 147,17,95,1763,12650,49806,123547,210314,255884,228807,150929,73428,25536,6142,892,73 %N A384964 Triangle read by rows: T(n,k) is the number of embeddings on the sphere of connected simple planar graphs with n nodes and k faces up to orientation preserving isomorphisms, n >= 1, k=1..max(1,2*n-4). %C A384964 Equivalently, T(n,k) is the number of sensed simple planar maps with n vertices and k faces. %C A384964 The number of edges is n+k-2. %C A384964 Terms of this sequence can be computed using the tool "plantri". The expanded reference gives rows 1..14 of this table. %H A384964 Andrew Howroyd, <a href="/A384964/b384964.txt">Table of n, a(n) for n = 1..158</a> (rows 1..14) %H A384964 Gunnar Brinkmann and Brendan McKay, <a href="https://users.cecs.anu.edu.au/~bdm/papers/plantri-full.pdf">Fast generation of planar graphs (expanded edition)</a>, Tables 19-22. %e A384964 Triangle begins: %e A384964 1; %e A384964 1; %e A384964 1, 1, %e A384964 2, 2, 1, 1, %e A384964 3, 8, 8, 6, 2, 1, %e A384964 6, 29, 60, 73, 52, 25, 6, 2, %e A384964 14, 113, 388, 768, 903, 728, 379, 136, 26, 6, %e A384964 34, 444, 2303, 6584, 11782, 14321, 12113, 7298, 3048, 872, 147, 17; %e A384964 ... %Y A384964 Row sums are A384965. %Y A384964 Antidiagonal sums are A006394. %Y A384964 Columns 1..2 are A002995, A384966. %Y A384964 Cf. A379430 (not necessarily simple), A342059 (2-connected), A239893 (3-connected), A384963 (unsensed). %K A384964 nonn,tabf %O A384964 1,5 %A A384964 _Andrew Howroyd_, Jun 13 2025