cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A384971 Consecutive internal states of the linear congruential pseudo-random number generator (106*s + 1283) mod 6075 when started at 1.

This page as a plain text file.
%I A384971 #14 Jun 20 2025 08:27:43
%S A384971 1,1389,2717,3760,4968,5441,904,5982,3575,3583,4431,3194,5722,315,
%T A384971 4298,1246,5784,812,2305,2613,4886,2824,2952,4370,2803,726,5339,2242,
%U A384971 2010,1718,1141,729,5657,5575,2958,5006,3394,2622,5840,673,5796,2084,3487,330,5888
%N A384971 Consecutive internal states of the linear congruential pseudo-random number generator (106*s + 1283) mod 6075 when started at 1.
%C A384971 Periodic with period 6075.
%C A384971 Described in Numerical Recipes as a "quick and dirty" generator.
%D A384971 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
%H A384971 Sean A. Irvine, <a href="/A384971/b384971.txt">Table of n, a(n) for n = 1..6075</a>
%H A384971 W. E. Sharp and Carter Bays, <a href="https://doi.org/10.1016/0098-3004(92)90060-5">A review of portable random number generators</a>, Computers and Geosciences, 18, 1 (1982), 79-87.
%H A384971 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%H A384971 <a href="/index/Rec#order_6075">Index entries for linear recurrences with constant coefficients</a>, order 6075.
%F A384971 a(n) = (106*a(n-1) + 1283) mod 6075.
%p A384971 a:= proc(n) option remember; `if`(n<2, n,
%p A384971       irem(106*a(n-1)+1283, 6075))
%p A384971     end:
%p A384971 seq(a(n), n=1..45);  # _Alois P. Heinz_, Jun 13 2025
%t A384971 NestList[Mod[106*# + 1283, 6075] &, 1, 50] (* _Paolo Xausa_, Jun 17 2025 *)
%Y A384971 Cf. A384113, A384114, A384126, A384152, A384158, A384196.
%K A384971 nonn,easy
%O A384971 1,2
%A A384971 _Sean A. Irvine_, Jun 13 2025