This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384987 #9 Jun 14 2025 10:36:06 %S A384987 1,1,0,1,1,0,1,2,9,0,1,3,20,133,0,1,4,33,320,3185,0,1,5,48,567,7920, %T A384987 88521,0,1,6,65,880,14529,232832,2709625,0,1,7,84,1265,23360,448203, %U A384987 7695232,59590189,0,1,8,105,1728,34785,752064,15740001,220228416,-2800437663,0 %N A384987 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A384984. %F A384987 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-6*n+5*j+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k). %e A384987 Square array begins: %e A384987 1, 1, 1, 1, 1, 1, ... %e A384987 0, 1, 2, 3, 4, 5, ... %e A384987 0, 9, 20, 33, 48, 65, ... %e A384987 0, 133, 320, 567, 880, 1265, ... %e A384987 0, 3185, 7920, 14529, 23360, 34785, ... %e A384987 0, 88521, 232832, 448203, 752064, 1164125, ... %o A384987 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-6*n+5*j+k)^(j-1)*binomial(n, j)*b(n-j, 3*j))); %o A384987 a(n, k) = b(n, -k); %Y A384987 Columns k=0..1 give A000007, A384984. %K A384987 sign,tabl %O A384987 0,8 %A A384987 _Seiichi Manyama_, Jun 14 2025