This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A384999 #24 Aug 06 2025 14:47:38 %S A384999 1,1,1,1,4,1,8,1,1,15,4,1,21,13,1,33,28,1,1,41,58,4,1,56,103,13,1,69, %T A384999 170,35,1,87,269,77,1,1,99,404,158,4,1,127,579,298,13,1,141,810,529, %U A384999 35,1,165,1116,880,86,1,189,1470,1431,183,1,1,220,1935,2214,371,4,1,238,2475,3348,701,13 %N A384999 Irregular triangle read by rows: T(n,k) is the total number of partitions of all numbers <= n with k designated summands, n >= 0, 0 <= k <= A003056(n). %C A384999 When part i has multiplicity j > 0 exactly one part i is "designated". %C A384999 The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k). %C A384999 Column k gives the partial sums of the column k of A385001. %C A384999 Columns converge to A210843 which is also the partial sums of A000716. %H A384999 Alois P. Heinz, <a href="/A384999/b384999.txt">Rows n = 0..1000, flattened</a> %e A384999 Triangle begins: %e A384999 --------------------------------------------- %e A384999 n\k: 0 1 2 3 4 5 6 %e A384999 --------------------------------------------- %e A384999 0 | 1; %e A384999 1 | 1, 1; %e A384999 2 | 1, 4; %e A384999 3 | 1, 8, 1; %e A384999 4 | 1, 15, 4; %e A384999 5 | 1, 21, 13; %e A384999 6 | 1, 33, 28, 1; %e A384999 7 | 1, 41, 58, 4; %e A384999 8 | 1, 56, 103, 13; %e A384999 9 | 1, 69, 170, 35; %e A384999 10 | 1, 87, 269, 77, 1; %e A384999 11 | 1, 99, 404, 158, 4; %e A384999 12 | 1, 127, 579, 298, 13; %e A384999 13 | 1, 141, 810, 529, 35; %e A384999 14 | 1, 165, 1116, 880, 86; %e A384999 15 | 1, 189, 1470, 1431, 183, 1; %e A384999 16 | 1, 220, 1935, 2214, 371, 4; %e A384999 17 | 1, 238, 2475, 3348, 701, 13; %e A384999 18 | 1, 277, 3156, 4894, 1269, 35; %e A384999 19 | 1, 297, 3921, 7036, 2187, 86; %e A384999 20 | 1, 339, 4866, 9871, 3639, 194; %e A384999 21 | 1, 371, 5906, 13629, 5872, 402, 1; %e A384999 ... %p A384999 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A384999 b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i))) %p A384999 end: %p A384999 g:= proc(n) option remember; `if`(n<0, 0, g(n-1)+b(n$2)) end: %p A384999 T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(g(n)): %p A384999 seq(T(n), n=0..20); # _Alois P. Heinz_, Jul 22 2025 %Y A384999 Columns: A000012 (k=0), A024916 (k=1). %Y A384999 Cf. A000217, A000716, A002024, A003056, A077285, A195825, A210843, A211970, A385001. %K A384999 nonn,look,tabf %O A384999 0,5 %A A384999 _Omar E. Pol_, Jul 22 2025