A385000 Square array read by upward antidiagonals: A(n,k) = 0 except for A(d*(m-1),m*(d-1)) = d, with n >= 0, k >= 0, d >= 1, m >= 1.
1, 1, 2, 1, 0, 3, 1, 0, 0, 4, 1, 0, 2, 0, 5, 1, 0, 0, 0, 0, 6, 1, 0, 0, 0, 0, 0, 7, 1, 0, 0, 2, 3, 0, 0, 8, 1, 0, 0, 0, 0, 0, 0, 0, 9, 1, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 0, 0, 0, 2, 0, 4, 0, 0, 0, 11, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12, 1, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 13, 1, 0, 0, 0, 0, 2, 0, 0, 5, 0, 0, 0, 0, 14
Offset: 0
Examples
The corner 9 X 9 of the square array is as shown below: . \k 0 1 2 3 4 5 6 7 8 n\ _ _ _ _ _ _ _ _ _ _ | 0 | 1 2 3 4 5 6 7 8 9 1 | 1 0 0 0 0 0 0 0 0 2 | 1 0 2 0 0 0 0 0 0 3 | 1 0 0 0 3 0 0 0 0 4 | 1 0 0 2 0 0 4 0 0 5 | 1 0 0 0 0 0 0 0 5 6 | 1 0 0 0 2 0 3 0 0 7 | 1 0 0 0 0 0 0 0 0 8 | 1 0 0 0 0 2 0 0 0 ... . The corner 25 X 25 of the square array without the zeros is as shown below: . 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 \k 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 n\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 0 | 1 2 3 4 5 6 7 8 9 ... 1 | 1 2 | 1 2 3 | 1 3 4 | 1 2 4 5 | 1 5 6 | 1 2 3 6 7 | 1 7 8 | 1 2 4 8 9 | 1 3 9 10 | 1 2 5 10 11 | 1 11 12 | 1 2 3 4 6 12 13 | 1 13 14 | 1 2 7 15 | 1 3 5 16 | 1 2 4 8 17 | 1 18 | 1 2 3 6 9 19 | 1 20 | 1 2 4 5 21 | 1 3 7 22 | 1 2 23 | 1 24 | 1 2 3 4 ... . The corner 25 X 25 of the square array without the zeros with the row and the curve of the divisors of 12 is as shown below: . 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 \k 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 n\ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ | 0 | 12 1 | 2 | 3 | 4 | 5 | 6 | 6 7 | 8 | 4 9 | 3 10 | 2 11 | 1 12 | 1 2 3 4 6 12 ... . The position of the conjugate divisors of 12 on the curve is symmetric respect to the main diagonal of the square array. The position of the conjugate divisors of 12 in row 12 is symmetric respect the position (12,11). That position is in the same column that contains to the number 12 in the row 0.
Comments