cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).

This page as a plain text file.
%I A385001 #82 Aug 12 2025 20:32:51
%S A385001 1,0,1,0,3,0,4,1,0,7,3,0,6,9,0,12,15,1,0,8,30,3,0,15,45,9,0,13,67,22,
%T A385001 0,18,99,42,1,0,12,135,81,3,0,28,175,140,9,0,14,231,231,22,0,24,306,
%U A385001 351,51,0,24,354,551,97,1,0,31,465,783,188,3,0,18,540,1134,330,9
%N A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n).
%C A385001 The divisor function sigma_1(n) = A000203(n) is also the number of partitions of n with only one designated summand, n >= 1.
%C A385001 When part i has multiplicity j > 0 exactly one part i is "designated".
%C A385001 The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k).
%C A385001 Alternating row sums give A329157.
%C A385001 Columns converge to A000716.
%C A385001 This triangle equals A060043 with reversed rows and an additional column 0.
%H A385001 Alois P. Heinz, <a href="/A385001/b385001.txt">Rows n = 0..1000, flattened</a>
%F A385001 From _Alois P. Heinz_, Jul 18 2025: (Start)
%F A385001 Sum_{k>=1} k * T(n,k) = A293421(n).
%F A385001 T(A000096(n),n) = A000716(n). (End)
%F A385001 G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - _John Tyler Rascoe_, Jul 23 2025
%F A385001 Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - _Vaclav Kotesovec_, Aug 01 2025
%e A385001 Triangle begins:
%e A385001 --------------------------------------------
%e A385001    n\k:   0    1     2     3     4    5   6
%e A385001 --------------------------------------------
%e A385001    0 |    1;
%e A385001    1 |    0,   1;
%e A385001    2 |    0,   3;
%e A385001    3 |    0,   4,    1;
%e A385001    4 |    0,   7,    3;
%e A385001    5 |    0,   6,    9;
%e A385001    6 |    0,  12,   15,    1;
%e A385001    7 |    0,   8,   30,    3;
%e A385001    8 |    0,  15,   45,    9;
%e A385001    9 |    0,  13,   67,   22;
%e A385001   10 |    0,  18,   99,   42,    1;
%e A385001   11 |    0,  12,  135,   81,    3;
%e A385001   12 |    0,  28,  175,  140,    9;
%e A385001   13 |    0,  14,  231,  231,   22;
%e A385001   14 |    0,  24,  306,  351,   51;
%e A385001   15 |    0,  24,  354,  551,   97,   1;
%e A385001   16 |    0,  31,  465,  783,  188,   3;
%e A385001   17 |    0,  18,  540, 1134,  330,   9;
%e A385001   18 |    0,  39,  681, 1546,  568,  22;
%e A385001   19 |    0,  20,  765, 2142,  918,  51;
%e A385001   20 |    0,  42,  945, 2835, 1452, 108;
%e A385001   21 |    0,  32, 1040, 3758, 2233, 208,  1;
%e A385001   ...
%e A385001 For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below:
%e A385001    6'
%e A385001    3'+ 3
%e A385001    3 + 3'
%e A385001    2'+ 2 + 2
%e A385001    2 + 2'+ 2
%e A385001    2 + 2 + 2'
%e A385001    1'+ 1 + 1 + 1 + 1 + 1
%e A385001    1 + 1'+ 1 + 1 + 1 + 1
%e A385001    1 + 1 + 1'+ 1 + 1 + 1
%e A385001    1 + 1 + 1 + 1'+ 1 + 1
%e A385001    1 + 1 + 1 + 1 + 1'+ 1
%e A385001    1 + 1 + 1 + 1 + 1 + 1'
%e A385001 So T(6,1) = 12, the same as A000203(6) = 12.
%e A385001 .
%e A385001 For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below:
%e A385001    5'+ 1'
%e A385001    4'+ 2'
%e A385001    4'+ 1'+ 1
%e A385001    4'+ 1 + 1'
%e A385001    3'+ 1'+ 1 + 1
%e A385001    3'+ 1 + 1'+ 1
%e A385001    3'+ 1 + 1 + 1'
%e A385001    2'+ 2 + 1'+ 1
%e A385001    2'+ 2 + 1 + 1'
%e A385001    2 + 2'+ 1'+ 1
%e A385001    2 + 2'+ 1 + 1'
%e A385001    2'+ 1'+ 1 + 1 + 1
%e A385001    2'+ 1 + 1'+ 1 + 1
%e A385001    2'+ 1 + 1 + 1'+ 1
%e A385001    2'+ 1 + 1 + 1 + 1'
%e A385001 So T(6,2) = 15, the same as A002127(6) = 15.
%e A385001 .
%e A385001 For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below:
%e A385001    3'+ 2'+ 1'
%e A385001 So T(6,3) = 1, the same as A002128(6) = 1.
%e A385001 There are 28 partitions of 6 with designated summands, so A077285(6) = 28.
%e A385001 .
%p A385001 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
%p A385001       b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i)))
%p A385001     end:
%p A385001 T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)):
%p A385001 seq(T(n), n=0..20);  # _Alois P. Heinz_, Jul 18 2025
%Y A385001 Columns: A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5), A384926 (k=6).
%Y A385001 Row sums give A077285.
%Y A385001 Cf. A000217, A002024, A003056, A060043, A196020, A252117, A329157, A365434, A384999.
%Y A385001 Cf. A000096, A000716, A116608, A293421, A384998, A384999.
%K A385001 nonn,look,tabf
%O A385001 0,5
%A A385001 _Omar E. Pol_, Jul 17 2025