This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385001 #82 Aug 12 2025 20:32:51 %S A385001 1,0,1,0,3,0,4,1,0,7,3,0,6,9,0,12,15,1,0,8,30,3,0,15,45,9,0,13,67,22, %T A385001 0,18,99,42,1,0,12,135,81,3,0,28,175,140,9,0,14,231,231,22,0,24,306, %U A385001 351,51,0,24,354,551,97,1,0,31,465,783,188,3,0,18,540,1134,330,9 %N A385001 Irregular triangle read by rows: T(n,k) is the number of partitions of n with k designated summands, n >= 0, 0 <= k <= A003056(n). %C A385001 The divisor function sigma_1(n) = A000203(n) is also the number of partitions of n with only one designated summand, n >= 1. %C A385001 When part i has multiplicity j > 0 exactly one part i is "designated". %C A385001 The length of the row n is A002024(n+1) = 1 + A003056(n), hence the first positive element in column k is in the row A000217(k). %C A385001 Alternating row sums give A329157. %C A385001 Columns converge to A000716. %C A385001 This triangle equals A060043 with reversed rows and an additional column 0. %H A385001 Alois P. Heinz, <a href="/A385001/b385001.txt">Rows n = 0..1000, flattened</a> %F A385001 From _Alois P. Heinz_, Jul 18 2025: (Start) %F A385001 Sum_{k>=1} k * T(n,k) = A293421(n). %F A385001 T(A000096(n),n) = A000716(n). (End) %F A385001 G.f.: Product_{i>0} 1 + (y*x^i)/(1 - x^i)^2. - _John Tyler Rascoe_, Jul 23 2025 %F A385001 Conjecture: For fixed k >= 1, Sum_{j=1..n} T(j,k) ~ Pi^(2*k) * n^(2*k) / ((2*k)! * (2*k+1)!). - _Vaclav Kotesovec_, Aug 01 2025 %e A385001 Triangle begins: %e A385001 -------------------------------------------- %e A385001 n\k: 0 1 2 3 4 5 6 %e A385001 -------------------------------------------- %e A385001 0 | 1; %e A385001 1 | 0, 1; %e A385001 2 | 0, 3; %e A385001 3 | 0, 4, 1; %e A385001 4 | 0, 7, 3; %e A385001 5 | 0, 6, 9; %e A385001 6 | 0, 12, 15, 1; %e A385001 7 | 0, 8, 30, 3; %e A385001 8 | 0, 15, 45, 9; %e A385001 9 | 0, 13, 67, 22; %e A385001 10 | 0, 18, 99, 42, 1; %e A385001 11 | 0, 12, 135, 81, 3; %e A385001 12 | 0, 28, 175, 140, 9; %e A385001 13 | 0, 14, 231, 231, 22; %e A385001 14 | 0, 24, 306, 351, 51; %e A385001 15 | 0, 24, 354, 551, 97, 1; %e A385001 16 | 0, 31, 465, 783, 188, 3; %e A385001 17 | 0, 18, 540, 1134, 330, 9; %e A385001 18 | 0, 39, 681, 1546, 568, 22; %e A385001 19 | 0, 20, 765, 2142, 918, 51; %e A385001 20 | 0, 42, 945, 2835, 1452, 108; %e A385001 21 | 0, 32, 1040, 3758, 2233, 208, 1; %e A385001 ... %e A385001 For n = 6 and k = 1 there are 12 partitions of 6 with only one designated summand as shown below: %e A385001 6' %e A385001 3'+ 3 %e A385001 3 + 3' %e A385001 2'+ 2 + 2 %e A385001 2 + 2'+ 2 %e A385001 2 + 2 + 2' %e A385001 1'+ 1 + 1 + 1 + 1 + 1 %e A385001 1 + 1'+ 1 + 1 + 1 + 1 %e A385001 1 + 1 + 1'+ 1 + 1 + 1 %e A385001 1 + 1 + 1 + 1'+ 1 + 1 %e A385001 1 + 1 + 1 + 1 + 1'+ 1 %e A385001 1 + 1 + 1 + 1 + 1 + 1' %e A385001 So T(6,1) = 12, the same as A000203(6) = 12. %e A385001 . %e A385001 For n = 6 and k = 2 there are 15 partitions of 6 with two designated summands as shown below: %e A385001 5'+ 1' %e A385001 4'+ 2' %e A385001 4'+ 1'+ 1 %e A385001 4'+ 1 + 1' %e A385001 3'+ 1'+ 1 + 1 %e A385001 3'+ 1 + 1'+ 1 %e A385001 3'+ 1 + 1 + 1' %e A385001 2'+ 2 + 1'+ 1 %e A385001 2'+ 2 + 1 + 1' %e A385001 2 + 2'+ 1'+ 1 %e A385001 2 + 2'+ 1 + 1' %e A385001 2'+ 1'+ 1 + 1 + 1 %e A385001 2'+ 1 + 1'+ 1 + 1 %e A385001 2'+ 1 + 1 + 1'+ 1 %e A385001 2'+ 1 + 1 + 1 + 1' %e A385001 So T(6,2) = 15, the same as A002127(6) = 15. %e A385001 . %e A385001 For n = 6 and k = 3 there is only one partition of 6 with three designated summands as shown below: %e A385001 3'+ 2'+ 1' %e A385001 So T(6,3) = 1, the same as A002128(6) = 1. %e A385001 There are 28 partitions of 6 with designated summands, so A077285(6) = 28. %e A385001 . %p A385001 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0, %p A385001 b(n, i-1)+add(expand(b(n-i*j, i-1)*j*x), j=1..n/i))) %p A385001 end: %p A385001 T:= n-> (p-> seq(coeff(p,x,i), i=0..degree(p)))(b(n$2)): %p A385001 seq(T(n), n=0..20); # _Alois P. Heinz_, Jul 18 2025 %Y A385001 Columns: A000007 (k=0), A000203 (k=1), A002127 (k=2), A002128 (k=3), A365664 (k=4), A365665 (k=5), A384926 (k=6). %Y A385001 Row sums give A077285. %Y A385001 Cf. A000217, A002024, A003056, A060043, A196020, A252117, A329157, A365434, A384999. %Y A385001 Cf. A000096, A000716, A116608, A293421, A384998, A384999. %K A385001 nonn,look,tabf %O A385001 0,5 %A A385001 _Omar E. Pol_, Jul 17 2025