cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385011 G.f.: 1/Product_{k>=1} (1 - x^(2*k^2)) * (1 - x^k).

This page as a plain text file.
%I A385011 #5 Jun 15 2025 09:33:53
%S A385011 1,1,3,4,8,11,19,26,42,57,86,116,168,224,314,415,568,743,998,1293,
%T A385011 1709,2196,2862,3649,4702,5950,7590,9540,12061,15064,18895,23460,
%U A385011 29220,36081,44651,54854,67490,82513,100979,122904,149671,181400,219904,265463,320453,385397
%N A385011 G.f.: 1/Product_{k>=1} (1 - x^(2*k^2)) * (1 - x^k).
%C A385011 For n<=17, a(n-1) + a(n) = A369579(n).
%F A385011 a(n) ~ exp(Pi*sqrt(2*n/3) + 3^(1/4)*zeta(3/2)*n^(1/4)/2^(5/4) - 3*zeta(3/2)^2/(64*Pi)) / (2^(11/4) * 3^(3/4) * sqrt(Pi) * n^(5/4)).
%t A385011 nmax = 60; CoefficientList[Series[1/Product[(1-x^(2*k^2))*(1-x^k), {k, 1, nmax}], {x, 0, nmax}], x]
%Y A385011 Cf. A000041, A001156, A369579, A385012.
%K A385011 nonn
%O A385011 0,3
%A A385011 _Vaclav Kotesovec_, Jun 15 2025