This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385020 #10 Jun 15 2025 09:58:16 %S A385020 1,1,0,1,1,0,1,2,5,0,1,3,11,3,0,1,4,18,16,-51,0,1,5,26,40,-71,-190,0, %T A385020 1,6,35,76,-45,-452,-401,0,1,7,45,125,43,-702,-1683,3672,0,1,8,56,188, %U A385020 210,-836,-3784,4336,51925,0,1,9,68,266,474,-729,-6480,144,108645,151539,0 %N A385020 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of B(x)^k, where B(x) is the g.f. of A385016. %F A385020 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} binomial(-n+j+k-1,j-1) * b(n-j,4*j)/j. Then A(n,k) = b(n,-k). %e A385020 Square array begins: %e A385020 1, 1, 1, 1, 1, 1, 1, ... %e A385020 0, 1, 2, 3, 4, 5, 6, ... %e A385020 0, 5, 11, 18, 26, 35, 45, ... %e A385020 0, 3, 16, 40, 76, 125, 188, ... %e A385020 0, -51, -71, -45, 43, 210, 474, ... %e A385020 0, -190, -452, -702, -836, -729, -234, ... %e A385020 0, -401, -1683, -3784, -6480, -9360, -11800, ... %o A385020 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, binomial(-n+j+k-1, j-1)*b(n-j, 4*j)/j)); %o A385020 a(n, k) = b(n, -k); %Y A385020 Columns k=0..1 give A000007, A385016. %K A385020 sign,tabl %O A385020 0,8 %A A385020 _Seiichi Manyama_, Jun 15 2025