cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385035 Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.

This page as a plain text file.
%I A385035 #18 Jul 04 2025 05:03:16
%S A385035 23,53,89,263,599,1283,1979,3449,5399,5639,11813,14543,41213,42443,
%T A385035 44249,47129,55799,57773,65699,74699,75983,79613,84299,87539,88643,
%U A385035 88793,88799,113153,115763,126473,143813,148913,150203,160073,163973,167099,176489,178799,178889,209249
%N A385035 Primes p such that p + 8, p + 14, p + 18 and p + 20 are also primes.
%e A385035 p=23: 23+8=31, 23+14=37, 23+18=41, 23+20=43 —> prime quintuple: (23, 31, 37, 41, 43).
%p A385035 q:= p-> andmap(i-> isprime(p+i), [0, 8, 14, 18, 20]):
%p A385035 select(q, [5+6*i$i=0..35000])[];  # _Alois P. Heinz_, Jun 16 2025
%t A385035 Select[Prime[Range[20000]], AllTrue[#+{8, 14, 18,20}, PrimeQ]&] (* _Stefano Spezia_, Jun 18 2025 *)
%o A385035 (Magma) [p: p in PrimesUpTo(300000) | IsPrime(p+8) and IsPrime(p+14) and IsPrime(p+18) and IsPrime(p+20)]; // _Vincenzo Librandi_, Jul 04 2025
%Y A385035 Cf. A000040.
%Y A385035 Cf. A172454 [2, 4, 6], A078855 [6, 4, 2], A187057 [2, 4, 6, 8].
%K A385035 nonn
%O A385035 1,1
%A A385035 _Alexander Yutkin_, Jun 15 2025