cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385036 Consecutive states of the linear congruential pseudo-random number generator (419*s + 6173) mod 29282 when started at s=1.

This page as a plain text file.
%I A385036 #23 Jun 24 2025 09:59:06
%S A385036 1,6592,15713,1470,7181,28248,12157,4888,4505,19720,11329,9340,25127,
%T A385036 22148,3791,13374,17017,20770,12049,18200,18653,3486,2707,27690,12611,
%U A385036 19422,3595,19096,13411,3238,15923,1614,8953,9384,14281,16384,19081,7126,5203,19362
%N A385036 Consecutive states of the linear congruential pseudo-random number generator (419*s + 6173) mod 29282 when started at s=1.
%C A385036 Periodic with period 29282.
%C A385036 Described in Numerical Recipes as a "quick and dirty" generator.
%D A385036 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
%H A385036 Sean A. Irvine, <a href="/A385036/b385036.txt">Table of n, a(n) for n = 1..10000</a>
%H A385036 W. E. Sharp and Carter Bays, <a href="https://doi.org/10.1016/0098-3004(92)90060-5">A review of portable random number generators</a>, Computers and Geosciences, 18, 1 (1982), 79-87.
%H A385036 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%H A385036 <a href="/index/Rec#order_29282">Index entries for linear recurrences with constant coefficients</a>, order 29282.
%F A385036 a(n) = (419 * a(n-1) + 6173) mod 29282.
%p A385036 a:= proc(n) option remember; `if`(n<2, n,
%p A385036       irem(419*a(n-1)+6173, 29282))
%p A385036     end:
%p A385036 seq(a(n), n=1..44);  # after _Alois P. Heinz_
%t A385036 NestList[Mod[419*# + 6173, 29282] &, 1, 50] (* _Paolo Xausa_, Jun 17 2025 *)
%Y A385036 Cf. A384113, A384971, A385002.
%K A385036 nonn,easy
%O A385036 1,2
%A A385036 _Sean A. Irvine_, Jun 16 2025