cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385046 The sum of the unitary divisors of n that are 3-smooth numbers (A003586).

Original entry on oeis.org

1, 3, 4, 5, 1, 12, 1, 9, 10, 3, 1, 20, 1, 3, 4, 17, 1, 30, 1, 5, 4, 3, 1, 36, 1, 3, 28, 5, 1, 12, 1, 33, 4, 3, 1, 50, 1, 3, 4, 9, 1, 12, 1, 5, 10, 3, 1, 68, 1, 3, 4, 5, 1, 84, 1, 9, 4, 3, 1, 20, 1, 3, 10, 65, 1, 12, 1, 5, 4, 3, 1, 90, 1, 3, 4, 5, 1, 12, 1, 17
Offset: 1

Views

Author

Amiram Eldar, Jun 16 2025

Keywords

Comments

The number of these divisors is A382488(n), and the largest of them is A065331(n).

Crossrefs

The unitary analog of A072079.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), this sequence (3-smooth), A385047 (power of 2), A385048 (cubefull), A385049 (biquadratefree).

Programs

  • Mathematica
    f[n_, p_] := If[Divisible[n, p], p^IntegerExponent[n, p] + 1, 1]; a[n_] := f[n, 2]*f[n, 3]; Array[a, 100]
  • PARI
    a(n) = if(n%2, 1, 2^valuation(n, 2)+1) * if(!(n%3), 3^valuation(n, 3)+1, 1);

Formula

Multiplicative with a(p^e) = p^e + 1 if p <= 3, and 1 if p >= 5.
a(n) = A034448(n)/A385045(n).
a(n) <= A034448(n), with equality if and only if n 3-smooth.
a(n) <= A072079(n).
Dirichlet g.f.: zeta(s) * ((1-1/2^(2*s-1))/(1-1/2^(s-1))) * ((1-1/3^(2*s-1))/(1-1/3^(s-1))).
Sum_{k=1..n} a(k) ~ (n/(6*log(2)*log(3))) * (log(n)^2 + c1*log(n) + c2), where c1 = 2*gamma - 2 + 7*log(2) + 5*log(3) - 2*log(6) = 5.916004..., c2 = 2 - 5*log(2) - 11*log(2)^2/6 - 3*log(3) - 5*log(3)^2/6 + 15*log(2)*log(3)/2 + (5*log(2) + 3*log(3) - 2)*gamma - 2*gamma_1 = 1.957142..., gamma is Euler's constant (A001620), and gamma_1 is the 1st Stieltjes constant (A082633).