A385049 The sum of the unitary divisors of n that are biquadratefree numbers (A046100).
1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 1, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 1, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 4, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 1, 84, 144, 68, 90
Offset: 1
References
- D. Suryanarayana, The number and sum of k-free integers <= x which are prime to n, Indian J. Math., Vol. 11 (1969), pp. 131-139.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Francesco Pappalardi, A survey on k-freeness, Number Theory, Ramanujan Math. Soc. Lect. Notes Ser., Vol. 1 (2003), pp. 71-88.
Crossrefs
The unitary analog of A385006.
The sum of unitary divisors of n that are: A092261 (squarefree), A192066 (odd), A358346 (exponentially odd), A358347 (square), A360720 (powerful), A371242 (cubefree), A380396 (cube), A383763 (exponentially squarefree), A385043 (exponentially 2^n), A385045 (5-rough), A385046 (3-smooth), A385047 (power of 2), A385048 (cubefull), this sequence (biquadratefree).
Programs
-
Mathematica
f[p_, e_] := If[e < 4, p^e + 1, 1]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, if(f[i, 2] < 4, f[i, 1]^f[i, 2] + 1, 1)); }
Formula
Multiplicative with a(p^e) = p^e + 1 for e <= 3, and a(p^e) = 1 for e >= 4.
a(n) = 1 if and only if n is 4-full (A036967).
a(n) <= A034448(n), with equality if and only if n is biquadratefree.
Dirichlet g.f.: zeta(s) * Product_{p prime} (1 + 1/p^(s-1) + 1/p^(2*s-2) - 1/p^(2*s-1) + 1/p^(3*s-3) - 1/p^(3*s-2) - 1/p^(4*s-3)).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + 1/(p^2 + p) - 1/p^4) = 1.27769267395905900191... .
Comments