cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385053 Number of non-isomorphic simple games with n players and one minimal winning vector.

Original entry on oeis.org

1, 3, 7, 15, 29, 55, 99, 176, 305, 522, 877, 1461, 2399, 3905, 6291, 10055, 15929, 25063, 39139, 60742, 93665, 143619, 218967, 332157, 501303, 753079, 1126155, 1676908, 2486641, 3673000, 5404711, 7924206, 11577465, 16858381, 24468317, 35402812, 51068703
Offset: 1

Views

Author

Dani Samaniego Vidal, Jun 16 2025

Keywords

Comments

a(n) is also the number of non-isomorphic monotonic boolean functions with one minimal model.

Crossrefs

Second differences appear to be A052847.

Programs

  • Mathematica
    sgnvnn[0,0] = 1; sgnvnn[_,0] = 0;
    sgnvnn[n_,t_] := sgnvnn[n,t] = (1/t) Sum[If[Mod[k,l]==0, (k/l-1)sgnvnn[n-k,t-l], 0], {l,t},{k,n}];
    sg[n_,1] := sgnvnn[n,1] + 1;
    sg[n_,2] := sgnvnn[n,2] + 2 Sum[sgnvnn[n-i,1],{i,n-2}] + n - 1;
    sg[n_,t_] := sgnvnn[n,t] + 2 Sum[sgnvnn[n-i,t-1],{i,n-2}] + Sum[(i-1) sgnvnn[n-i,t-2],{i,2,n-2}];
    a[n_] := Sum[sg[n,t], {t,Quotient[n,2]+1}];
    Table[a[n], {n,50}] (* Andrei Zabolotskii, Jul 24 2025 *)

Extensions

Edited and extended by Andrei Zabolotskii, Jul 24 2025