cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385056 Prime numbers whose digit product is a positive cube.

This page as a plain text file.
%I A385056 #27 Jun 22 2025 23:30:26
%S A385056 11,139,181,193,241,389,421,811,839,881,983,1181,1193,1319,1777,1811,
%T A385056 1913,1931,1999,2141,2221,2269,2411,2663,3119,3191,3313,3331,3463,
%U A385056 3643,3833,3889,3911,4211,4363,4441,4691,6229,6263,6343,6491,6661,7177,7717,7877,8111
%N A385056 Prime numbers whose digit product is a positive cube.
%p A385056 q:= n-> isprime(n) and (p-> p>0 and iroot(p, 3)^3=p)(mul(i, i=convert(n, base, 10))):
%p A385056 select(q, [$2..10000])[];  # _Alois P. Heinz_, Jun 16 2025
%t A385056 q[n_] := Module[{pd = Times @@ IntegerDigits[n]}, pd > 0 && IntegerQ[Surd[pd, 3]]]; Select[Prime[Range[1300]], q] (* _Amiram Eldar_, Jun 16 2025 *)
%o A385056 (Python)
%o A385056 from sympy import primerange, integer_nthroot
%o A385056 from math import prod
%o A385056 is_cube = lambda n: n > 0 and integer_nthroot(n, 3)[1]
%o A385056 digit_product = lambda n: prod(map(int, str(n)))
%o A385056 cubigit_primes = [p for p in primerange(2, 100000) if is_cube(dp := digit_product(p))]
%o A385056 print(cubigit_primes)
%o A385056 (PARI) isok(k) = if (isprime(k), my(p=vecprod(digits(k))); p && ispower(p, 3)); \\ _Michel Marcus_, Jun 16 2025
%Y A385056 Intersection of A000040 and A237767.
%Y A385056 Subsequence of A038618.
%Y A385056 Cf. A184328.
%K A385056 nonn,base
%O A385056 1,1
%A A385056 _Mohd Anwar Jamal Faiz_, Jun 16 2025