This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385063 #8 Jun 16 2025 08:41:38 %S A385063 1,1,0,1,1,0,1,2,9,0,1,3,20,43,0,1,4,33,140,125,0,1,5,48,297,1080, %T A385063 -6279,0,1,6,65,520,3189,-3568,-412025,0,1,7,84,815,6800,18003, %U A385063 -828668,-9060911,0,1,8,105,1188,12285,70464,-1033749,-25887384,-98234103,0 %N A385063 Square array A(n,k), n >= 0, k >= 0, read by antidiagonals downwards, where column k is the expansion of e.g.f. B(x)^k, where B(x) is the e.g.f. of A385060. %F A385063 Let b(n,k) = 0^n if n*k=0, otherwise b(n,k) = (-1)^n * k * Sum_{j=1..n} (-n+k)^(j-1) * binomial(n,j) * b(n-j,3*j). Then A(n,k) = b(n,-k). %e A385063 Square array begins: %e A385063 1, 1, 1, 1, 1, 1, ... %e A385063 0, 1, 2, 3, 4, 5, ... %e A385063 0, 9, 20, 33, 48, 65, ... %e A385063 0, 43, 140, 297, 520, 815, ... %e A385063 0, 125, 1080, 3189, 6800, 12285, ... %e A385063 0, -6279, -3568, 18003, 70464, 168125, ... %o A385063 (PARI) b(n, k) = if(n*k==0, 0^n, (-1)^n*k*sum(j=1, n, (-n+k)^(j-1)*binomial(n, j)*b(n-j, 3*j))); %o A385063 a(n, k) = b(n, -k); %Y A385063 Columns k=0..1 give A000007, A385060. %K A385063 sign,tabl %O A385063 0,8 %A A385063 _Seiichi Manyama_, Jun 16 2025