cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385070 G.f.: Sum_{k>=0} x^k * Product_{j=1..6*k} (1 + x^j).

Original entry on oeis.org

1, 1, 2, 3, 5, 7, 10, 14, 18, 23, 30, 38, 48, 60, 74, 91, 112, 137, 166, 202, 244, 294, 352, 420, 500, 592, 700, 824, 968, 1133, 1323, 1541, 1791, 2077, 2403, 2776, 3198, 3679, 4226, 4845, 5546, 6340, 7236, 8246, 9385, 10667, 12108, 13728, 15545, 17581, 19860, 22409
Offset: 0

Views

Author

Vaclav Kotesovec, Jun 16 2025

Keywords

Comments

In general, for m>=1, if g.f. = Sum_{k>=0} x^k * Product_{j=1..m*k} (1 + x^j), then a(n) ~ Gamma(1/m) * 3^((m-2)/(4*m)) * exp(Pi*sqrt(n/3)) / (m * 2^(1 + 1/m) * Pi^(1 - 1/m) * n^((m+2)/(4*m))). - Vaclav Kotesovec, Jun 17 2025

Crossrefs

Programs

  • Mathematica
    nmax = 60; CoefficientList[Series[Sum[x^k*Product[1 + x^j, {j, 1, 6*k}], {k, 0, nmax}], {x, 0, nmax}], x]
    nmax = 60; p = 1; s = 1; Do[p = Expand[p*(1 + x^(6*k))*(1 + x^(6*k - 1))*(1 + x^(6*k - 2))*(1 + x^(6*k - 3))*(1 + x^(6*k - 4))*(1 + x^(6*k - 5))]; p = Take[p, Min[nmax + 1, Exponent[p, x] + 1, Length[p]]]; s += p*x^k;, {k, 1, nmax}]; CoefficientList[Series[s, {x, 0, nmax}], x]

Formula

a(n) ~ Gamma(1/6) * exp(Pi*sqrt(n/3)) / (2^(13/6) * 3^(5/6) * Pi^(5/6) * n^(1/3)).