cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385078 Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.

This page as a plain text file.
%I A385078 #16 Jun 25 2025 10:33:41
%S A385078 1,4008,3563,5428,8133,1976,12241,12762,12359,11620,2901,13544,5035,
%T A385078 2658,9059,4246,3213,12722,2491,6036,5423,3298,8481,7154,6079,3786,
%U A385078 4979,6130,9885,10658,9037,11784,3023,1864,4779,8,10777,8862,1025,202,11097,1370,2479
%N A385078 Consecutive states of the linear congruential pseudo-random number generator (967*s + 3041) mod 14406 when started at s=1.
%C A385078 Periodic with period 14406.
%C A385078 Described in Numerical Recipes as a "quick and dirty" generator.
%D A385078 William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical Recipes in C (2nd ed), Cambridge University Press, 1999 (see p. 285).
%H A385078 Sean A. Irvine, <a href="/A385078/b385078.txt">Table of n, a(n) for n = 1..14406</a>
%H A385078 W. E. Sharp and Carter Bays, <a href="https://doi.org/10.1016/0098-3004(92)90060-5">A review of portable random number generators</a>, Computers and Geosciences, 18, 1 (1982), 79-87.
%H A385078 <a href="/index/Ps#PRN">Index entries for sequences related to pseudo-random numbers.</a>
%H A385078 <a href="/index/Rec#order_14406">Index entries for linear recurrences with constant coefficients</a>, order 14406.
%F A385078 a(n) = (967 * a(n-1) + 3041) mod 14406.
%p A385078 a:= proc(n) option remember; `if`(n<2, n,
%p A385078       irem(967*a(n-1)+3041, 14406))
%p A385078     end:
%p A385078 seq(a(n), n=1..44);  # after _Alois P. Heinz_
%t A385078 NestList[Mod[967*# + 3041, 14406] &, 1, 50] (* _Paolo Xausa_, Jun 17 2025 *)
%Y A385078 Cf. A384113, A384971, A385002, A385036.
%K A385078 nonn,look,easy
%O A385078 1,2
%A A385078 _Sean A. Irvine_, Jun 16 2025