This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385087 #20 Jun 18 2025 00:53:04 %S A385087 3,3,10,3,6,8,12,3,6,6,11,8,11,12,16,3,6,6,12,6,9,13,17,8,11,11,16,12, %T A385087 15,16,20,3,6,6,14,6,9,11,15,6,9,9,14,13,16,17,21,8,11,11,17,11,14,17, %U A385087 21,12,15,15,20,16,19,20,24,3,6,6,13,6,9,11,15,6,9,9,14,11,14,15,19,6 %N A385087 2-adic valuation of A039699. %H A385087 Nikolai Beluhov, <a href="https://arxiv.org/abs/2506.12789">Powers of 2 in High-Dimensional Lattice Walks</a>, arXiv:2506.12789 [math.CO], 2025. See w4(n) in Table 1 p. 2. %F A385087 a(n) = A007814(A039699(n)) = A000120(n) + A007814(A002895(n)). %o A385087 (PARI) C=binomial; %o A385087 A002895(n) = sum(k=0, n, C(n, k)^2 * C(2*n-2*k, n-k) * C(2*k, k) ); %o A385087 a(n) = hammingweight(n) + valuation(A002895(n), 2); %o A385087 (Python) %o A385087 from math import comb %o A385087 def A385087(n): return (~(a:=(sum(comb(n,k)**2*comb(n-k<<1,n-k)*comb(m:=k<<1,k) for k in range(n+1>>1))<<1) + (0 if n&1 else comb(n,n>>1)**4)) & a-1).bit_length() + n.bit_count() # _Chai Wah Wu_, Jun 17 2025 %Y A385087 Cf. A000120, A002895, A007814, A039699. %K A385087 nonn,easy %O A385087 1,1 %A A385087 _Michel Marcus_, Jun 17 2025