cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385094 Primes that are the sum of distinct positive cubes.

This page as a plain text file.
%I A385094 #17 Jun 25 2025 11:03:31
%S A385094 73,197,251,281,307,349,379,433,443,503,521,541,547,577,587,631,659,
%T A385094 673,701,709,719,757,821,827,829,853,863,881,883,919,947,953,1009,
%U A385094 1091,1097,1153,1163,1171,1217,1223,1231,1249,1277,1289,1297,1307,1361,1367,1423,1433,1439,1483,1493
%N A385094 Primes that are the sum of distinct positive cubes.
%C A385094 12101 is the largest of 421 primes not in this sequence.
%H A385094 Zhining Yang, <a href="/A385094/b385094.txt">Table of n, a(n) for n = 1..1030</a>
%F A385094 For n > 1027, a(n) = prime(n + 421).
%e A385094 757 is in the sequence because prime 757 = 1^3 + 3^3 + 9^3 = 1^3 + 2^3 + 4^3 + 5^3 + 6^3 + 7^3.
%t A385094 m = 15; a = {0}; Do[a = Select[Union[a, a + k^3], # < m^3 &], {k, m}];
%t A385094 a = Select[PrimeQ]@a
%Y A385094 Cf. A003997, A122723.
%K A385094 nonn,easy
%O A385094 1,1
%A A385094 _Zhining Yang_, Jun 17 2025