cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A385107 a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) + a(n-5) with a(1) = 1, a(2) = 2, a(3) = 4, a(4) = 8, and a(5) = 15.

Original entry on oeis.org

1, 2, 4, 8, 15, 27, 48, 86, 157, 292, 549, 1034, 1939, 3613, 6697, 12381, 22889, 42384, 78642, 146136, 271720, 505137, 938514, 1742620, 3234360, 6002359, 11140379, 20680696, 38398206, 71302165, 132404188, 245856269, 456491098, 847539571, 1573534749, 2921413881, 5423970485, 10070489177
Offset: 1

Views

Author

Hung Viet Chu, Jun 18 2025

Keywords

Comments

a(n) is the number of subsets of {4, 8, 12,.., 4*n} that are Schreier and contain 4*n.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4, -6, 4, -1, 1}, {1, 2, 4, 8, 15}, 50] (* Paolo Xausa, Jun 25 2025 *)

Formula

a(n) = 2 + Sum_{i=1..n-2} Sum_{j=0..4i-2} binomial(n-i-1,j), for n > 1.
a(n) = A103372(4*n).
G.f.: x*(1 - 2*x + 2*x^2)/(1 - 4*x + 6*x^2 - 4*x^3 + x^4 - x^5).
Showing 1-1 of 1 results.