This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385114 #39 Jul 16 2025 20:53:19 %S A385114 0,1,2,3,4,7,9,11,16,23,25,31,33,47,49,51,64,79,83,127,131,255,271, %T A385114 319,320,351,355,383,385,415,417,419,512,543,551,767,771,2047,2111, %U A385114 2559,2561,3071,3135,8191,8207,10239,10271,10367,12288,12415,12431,13311,13315,14335 %N A385114 a(n) is the least k with k > a(n-1) such that A000120(k) = A002487(n), with a(0) = 0. %H A385114 Karl-Heinz Hofmann, <a href="/A385114/b385114.txt">Table of n, a(n) for n = 0..10000</a>. (Terms 0..293 from Hugo Pfoertner.) %H A385114 Karl-Heinz Hofmann, <a href="/A385114/a385114.txt">Python code.</a> %H A385114 Michael De Vlieger, <a href="/A385114/a385114.png">Plot the i-th bit of a(n) at (x,y) = (n,i)</a>, n = 1..2^11, reading bits from the least significant to the most. %H A385114 Karl-Heinz Hofmann, <a href="/A385114/a385114_1.png">Vertical visualization of terms in binary</a>, reading bits from the most significant to the least. %F A385114 a(A212288(n)) >= 2^A212289(n+1) - 1. - _Hugo Pfoertner_, Jul 15 2025 %e A385114 n | a(n)_2 a(n) A002487(n) %e A385114 ----+----------------------------- %e A385114 0 | 0 0 0 %e A385114 1 | 1 1 1 %e A385114 2 | 10 2 1 %e A385114 3 | 11 3 2 %e A385114 4 | 100 4 1 %e A385114 5 | 111 7 3 %e A385114 6 | 1001 9 2 %e A385114 7 | 1011 11 3 %e A385114 8 | 10000 16 1 %e A385114 9 | 10111 23 4 %e A385114 10 | 11001 25 3 %e A385114 11 | 11111 31 5 %e A385114 12 | 100001 33 2 %e A385114 13 | 101111 47 5 %e A385114 14 | 110001 49 3 %t A385114 k = s[0] = 0; s[1] = 1; s[n_] := s[n] = If[EvenQ[n], s[n/2], s[(n - 1)/2] + s[(n + 1)/2]]; Array[s, 2^10]; {k}~Join~Monitor[Table[Set[k, Max[k + 1, 2^s[n] - 1]]; While[DigitCount[k, 2, 1] != s[n], k++]; k, {n, 100}], n] (* _Michael De Vlieger_, Jul 14 2025 *) %o A385114 (PARI) lista(nn) = my(list = List([0]), last = 0); for (n=1, nn, my(k=last+1, d=dia(n)); while (hammingweight(k) != d, k++); last = k; listput(list, k);); Vec(list); \\ _Michel Marcus_, Jul 12 2025 %o A385114 (Python) # see links %Y A385114 Cf. A000120, A002487, A101624, A168081, A277020. %Y A385114 Cf. A212288, A212289. %K A385114 nonn,base %O A385114 0,3 %A A385114 _Karl-Heinz Hofmann_, Jun 18 2025