cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385115 Numbers k such that 2^4 * 3^k - 1 is prime.

This page as a plain text file.
%I A385115 #53 Aug 18 2025 06:28:56
%S A385115 1,3,9,13,31,43,81,121,235,1135,1245,1521,2019,2329,3573,11245,15571,
%T A385115 37333,54471,70641
%N A385115 Numbers k such that 2^4 * 3^k - 1 is prime.
%C A385115 All terms are odd, since if k were even, N = 2^4 * 3^k would be a perfect square and N - 1 could be factored as the difference of squares, hence not prime.
%C A385115 a(21) > 10^5. - _Michael S. Branicky_, Aug 15 2025
%t A385115 Select[Range[4000], PrimeQ[16 * 3^# - 1] &] (* _Amiram Eldar_, Aug 15 2025 *)
%o A385115 (Python)
%o A385115 from gmpy2 import is_prime
%o A385115 print([k for k in range(1, 4_000, 2) if is_prime(16 * 3**k - 1)])
%Y A385115 Cf. A005540, A005541, A387060.
%K A385115 nonn,more
%O A385115 1,2
%A A385115 _Ken Clements_, Aug 14 2025
%E A385115 a(17)-a(20) from _Michael S. Branicky_, Aug 15 2025