This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385123 #7 Jun 22 2025 03:11:35 %S A385123 1,0,1,0,2,2,0,5,6,6,0,14,22,36,24,0,42,90,150,240,120,0,132,378,648, %T A385123 1560,1800,720,0,429,1638,3318,8400,16800,15120,5040,0,1430,7278, %U A385123 18180,43128,126000,191520,141120,40320,0,4862,32946,98502,238320,834120,1905120,2328480,1451520,362880 %N A385123 Triangle Read by rows: T(n,k) is the number of rooted ordered trees with n non-root nodes with non-root node labels in {1,..,k} such that all labels appear at least once in all groups of sibling nodes. %e A385123 Triangle begins: %e A385123 k=0 1 2 3 4 5 6 7 %e A385123 n=0 [1] %e A385123 n=1 [0, 1] %e A385123 n=2 [0, 2, 2] %e A385123 n=3 [0, 5, 6, 6] %e A385123 n=4 [0, 14, 22, 36, 24] %e A385123 n=5 [0, 42, 90, 150, 240, 120] %e A385123 n=6 [0, 132, 378, 648, 1560, 1800, 720] %e A385123 n=7 [0, 429, 1638, 3318, 8400, 16800, 15120, 5040] %e A385123 ... %e A385123 T(3,2) = 6 counts the three leaf permutations of each of the following trees: %e A385123 __o__ __o__ %e A385123 / | \ / | \ %e A385123 (1) (1) (2) (1) (2) (2) %o A385123 (PARI) %o A385123 subsets(S) = {my(s=List()); for(i=0, 2^(#S) -1, my(x=List()); for(j=1,#S, if(bitand(i, 1<<(j-1)), listput(x, S[j]))); listput(s,Vec(x))); Vec(s)} %o A385123 C_aB(B) = {my(S = subsets(B)); sum(i=1,#S, (1/(1-x*z*#S[i]))*(-1)^(#B-#S[i]))} %o A385123 D(k,N,B) = {if(k>N,1, substpol(C_aB(B),z,1 + D(k+1,N-#B+1,B)))} %o A385123 Dx(N,B) = {Vec(1+D(1,N,B)+ O('x^(N+1)))} %o A385123 T(max_row) = {my( N = max_row+1, v = vector(N, i, if(i==1, 1, 0))~); for(k=1, N, v=matconcat([v, Dx(N+1, vector(k,i,i))~])); vector(N, n, vector(n, k, v[n, k]))} %o A385123 T(8) %Y A385123 Cf. A000108 (column k=1), A000142 (main diagonal), A385125 (row sums). %Y A385123 Cf. A107429, A384685, A384747. %K A385123 nonn,tabl %O A385123 0,5 %A A385123 _John Tyler Rascoe_, Jun 18 2025