A385134 The sum of divisors d of n such that n/d is a biquadratefree number (A046100).
1, 3, 4, 7, 6, 12, 8, 15, 13, 18, 12, 28, 14, 24, 24, 30, 18, 39, 20, 42, 32, 36, 24, 60, 31, 42, 40, 56, 30, 72, 32, 60, 48, 54, 48, 91, 38, 60, 56, 90, 42, 96, 44, 84, 78, 72, 48, 120, 57, 93, 72, 98, 54, 120, 72, 120, 80, 90, 60, 168, 62, 96, 104, 120, 84, 144
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), this sequence (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), A385139 (exponentially 2^n).
Programs
-
Mathematica
f[p_, e_] := p^(e-3)*(1 + p + p^2 + p^3); f[p_, 1] := 1 + p; f[p_, 2] := 1 + p + p^2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n), p, e); prod(i = 1, #f~, p = f[i,1]; e = f[i,2]; p^max(e-3,0) * (p^min(e+1,4)-1)/(p-1));}
Formula
Multiplicative with a(p) = 1 + p, a(p^2) = 1 + p + p^2, and a(p^e) = p^(e-3) * (1 + p + p^2 + p^3), for e >= 3.
In general, the sum of divisors d of n such that n/d is k-free (not divisible by a k-th power larger than 1) is multiplicative with a(p^e) = p^max(e-k+1,0) * (p^min(e+1,k)-1)/(p-1).
Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(4*s).
In general, the sum of divisors d of n such that n/d is k-free has Dirichlet g.f.: zeta(s) * zeta(s-1) / zeta(k*s).
Sum_{i=1..n} a(i) ~ (1575 / (2*Pi^6)) * n^2.