cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385139 The sum of divisors d of n such that n/d has exponents in its prime factorization that are all powers of 2 (A138302).

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 14, 13, 18, 12, 28, 14, 24, 24, 29, 18, 39, 20, 42, 32, 36, 24, 56, 31, 42, 39, 56, 30, 72, 32, 58, 48, 54, 48, 91, 38, 60, 56, 84, 42, 96, 44, 84, 78, 72, 48, 116, 57, 93, 72, 98, 54, 117, 72, 112, 80, 90, 60, 168, 62, 96, 104, 116, 84, 144
Offset: 1

Views

Author

Amiram Eldar, Jun 19 2025

Keywords

Crossrefs

The sum of divisors d of n such that n/d is: A001615 (squarefree), A002131 (odd), A069208 (powerful), A076752 (square), A129527 (power of 2), A254981 (cubefree), A244963 (nonsquarefree), A327626 (cube), A385134 (biquadratefree), A385135 (exponentially odd), A385136 (cubefull), A385137 (3-smooth), A385138 (5-rough), this sequence (exponentially 2^n).

Programs

  • Mathematica
    f[p_, e_] := p^e + Sum[p^(e - 2^k), {k, 0, Floor[Log2[e]]}]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i, 1]^f[i, 2] + sum(k = 0, logint(f[i, 2], 2), f[i, 1]^(f[i, 2]-2^k)));}

Formula

Multiplicative with a(p^e) = p^e + Sum_{k=0..floor(log_2(e))} p^(e-2^k).
a(n) <= A000203(n), with equality if and only if n is cubefree (A004709).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = Product_{p prime} (1 + (1-1/p)*(Sum_{k>=1} (Sum_{j=0..floor(log_2(k))} 1/p^(k+2^j)))) = 1.62194750148969761827... .