This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385152 #22 Jul 08 2025 19:02:31 %S A385152 0,1,2262,11017977685,24316671758562,118442787685171571497, %T A385152 261403178754290105125230,1273254889025744028795358122877, %U A385152 2810072963163120003620778537378426,13687435462403616663579190345877254457425,30208163863695025530402450846321663951473670 %N A385152 Pentagonal numbers that are one-fifth of another pentagonal number. %F A385152 Empirical G.f.: (z + 2261*z^2 + 268018301*z^3 + 728035*z^4 + 330*z^5)/(1 - z - 10749957122*z^2 + 10749957122*z^3 + z^4 - z^5). - _Robert Israel_, Jun 30 2025 %e A385152 P = 2262 is a term because both P and 5*P are pentagonal numbers. %p A385152 ispent:= x -> issqr(1+24*x) and sqrt(1+24*x) mod 6 = 5: ispent(0):= true: %p A385152 A := (sqrt(5)/2 - 1/2)*(9 + 4*sqrt(5))^i + (-sqrt(5)/2 - 1/2)*(9 - 4*sqrt(5))^i: %p A385152 B := (sqrt(5)/2 + 1/2)*(9 + 4*sqrt(5))^i + (-sqrt(5)/2 + 1/2)*(9 - 4*sqrt(5))^i: %p A385152 M:= 10^60: # to get all terms <= M %p A385152 R:= NULL: %p A385152 for i from 0 do %p A385152 t:= simplify(A); %p A385152 if t mod 6 = 5 then %p A385152 k:= (t+1)/6; x:= k*(3*k-1)/10; %p A385152 if x > M then break fi; %p A385152 if ispent(x) then R:= R, x fi; %p A385152 fi %p A385152 od: %p A385152 for i from 0 do %p A385152 t:= simplify(B); %p A385152 if t mod 6 = 5 then %p A385152 k:= (t+1)/6; x:= k*(3*k-1)/10; %p A385152 if x > M then break fi; %p A385152 if ispent(x) then R:= R, x fi; %p A385152 fi %p A385152 od: %p A385152 sort([R]); # _Robert Israel_, Jun 30 2025 %Y A385152 Cf. A000326, A385146. %K A385152 nonn %O A385152 1,3 %A A385152 _Kelvin Voskuijl_, Jun 19 2025 %E A385152 a(6) from _Michel Marcus_, Jun 29 2025 %E A385152 More terms from _Robert Israel_, Jun 30 2025