This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385158 #34 Jul 23 2025 14:43:33 %S A385158 1,2,3,4,5,6,7,8,9,10,20,30,40,50,60,70,80,90,100,199,200,300,400,500, %T A385158 600,700,800,900,919,1000,1188,1818,1881,1909,1990,2000,2999,3000, %U A385158 4000,5000,6000,7000,8000,8118,8181,9000,9019,9190,9299,9929,10000 %N A385158 Numbers k such that the sum of the digits of k is a number that appears as a substring of k, and every nonzero digit of k appears in that sum. %e A385158 1818 is in the sequence because 1 + 8 + 1 + 8 = 18, and 18 appears within the number. Also, all nonzero digits (1 and 8) are found in the digit sum (18). %p A385158 filter:= proc(k) local L,s,S,nL,nS,i; %p A385158 L:= convert(k,base,10); %p A385158 nL:= nops(L); %p A385158 s:= convert(L,`+`); %p A385158 S:= convert(s,base,10); %p A385158 nS:= nops(S); %p A385158 (convert(L,set) minus {0} = convert(S,set) minus {0}) and member(S, [seq(L[i..i+nS-1],i=1..nL-nS+1)]) %p A385158 end proc: %p A385158 select(filter, [$1..10000]); # _Robert Israel_, Jul 23 2025 %t A385158 isok[n_] := Module[{digits, sum, sumStr}, %t A385158 digits = IntegerDigits[n]; %t A385158 sum = Total[digits]; %t A385158 sumStr = ToString[sum]; %t A385158 StringContainsQ[ToString[n], sumStr] && %t A385158 AllTrue[DeleteCases[digits, 0], %t A385158 DigitCount[sum, 10, #] > 0 &] %t A385158 ]; %t A385158 Select[Range[9999], isok] %o A385158 (Python) %o A385158 def ok(n): %o A385158 digits = str(n) %o A385158 digit_sum_str = str(sum(map(int, digits))) %o A385158 return digit_sum_str in digits and all(d in digit_sum_str for d in set(digits) - {'0'}) %o A385158 print([k for k in range(1, 10001) if ok(k)]) %Y A385158 Cf. A052018, A007953, A031286 (numbers containing a given substring), A070939 (numbers equal to the sum of their digits concatenated), A061209 (numbers containing their digit sum). %K A385158 nonn,base %O A385158 1,2 %A A385158 _Rivka Maryles_, Jun 19 2025