A385164 Let p = A002145(n) be the n-th prime == 3 (mod 4); 8*a(n) is the multiplicative order of 1+-i modulo p in Gaussian integers.
1, 3, 5, 9, 11, 5, 7, 23, 29, 33, 35, 39, 41, 51, 53, 7, 65, 69, 15, 81, 83, 89, 95, 99, 105, 37, 113, 119, 25, 131, 135, 47, 51, 155, 15, 173, 179, 183, 189, 191, 209, 43, 73, 221, 231, 233, 239, 243, 245, 83, 251, 261, 273, 281, 57, 293, 299, 303, 309, 45, 107, 323, 329, 11, 115
Offset: 1
Examples
For A002145(4) = 19: Since (1+i)^(4k) = (-4)^k, we have (1+i)^72 == 1 (mod 19), and 72 is the smallest such exponent. Hence a(4) = 72/8 = 9.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
forprime(p=3, 1e3, if(p%4==3, print1(znorder(Mod(-4,p))/2, ", ")))
Formula
a(n) = ord(-4,p)/2, where ord(a,p) is the multiplicative order of a modulo p.