A385166 Let p = A002145(n) be the n-th prime == 3 (mod 4); a(n) = (p+1) * ord(5,p) / ord(2+-i,p) = (p+1) * ord(5,p) / A385165(n). Here ord(a,m) is the multiplicative order of a modulo m.
1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 1, 2, 5, 1, 1, 1, 1, 3, 2, 2, 1, 1, 2, 2, 1, 1, 1, 11, 1, 4, 3, 10, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 6, 1, 3, 1, 1, 1, 4, 3, 24, 1, 1, 1, 1, 1, 3, 1, 4, 2, 1, 1, 1, 1, 1, 2, 1, 1, 8, 1, 27, 1, 1, 1, 1, 20, 3, 1, 4, 1, 1
Offset: 1
Examples
The multiplicative order of 2+-i modulo A002145(3) = 11 is A385165(3) = 30, so a(3) = (12*ord(5,11))/30 = 2. The multiplicative order of 2+-i modulo A002145(13) = 83 is A385165(13) = 2296, so a(13) = (84*ord(5,83))/2296 = 3.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p) forprime(p=3, 1e3, if(p%4==3, print1(quot(p), ", ")))
Comments