A385169 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is odd.
331, 571, 599, 691, 839, 971, 1051, 1171, 1291, 1451, 1571, 1879, 2131, 2411, 2971, 3251, 3331, 3491, 3571, 3691, 3851, 4051, 4091, 4211, 4651, 4679, 4691, 4919, 4931, 5051, 5171, 5479, 5531, 5651, 5839, 5851, 5879, 6011, 6599, 6679, 6691, 7079, 7211, 7331, 7691, 8011, 8039, 8171, 8731, 8839, 9011, 9371, 9811
Offset: 1
Examples
8731 is a term since (2+-i)^635253 == 1 (mod 8731), and 635253 is odd. 8839 is a term since (2+-i)^57447 == 1 (mod 8839), and 57447 is odd. 9011 is a term since (2+-i)^2029953 == 1 (mod 9011), and 2029953 is odd.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p) isA385169(p) = isprime(p) && p%4==3 && ord(p)%2
Comments