cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385175 Cubes using at most three distinct digits, not ending in 0.

This page as a plain text file.
%I A385175 #22 Jul 10 2025 11:24:07
%S A385175 1,8,27,64,125,216,343,512,729,1331,2744,3375,46656,238328,778688,
%T A385175 1030301,5177717,7077888,9393931,700227072,1003003001,44474744007,
%U A385175 1000300030001,1000030000300001,1331399339931331,3163316636166336,1000003000003000001,1000000300000030000001,1000000030000000300000001
%N A385175 Cubes using at most three distinct digits, not ending in 0.
%C A385175 This sequence has infinitely many terms since (10^m + 1)^3 is a term for all m >= 0.
%C A385175 Conjecture: a(26) = 3163316636166336 is the largest term with nonzero digits (See comments of A030294 and the data of A155146, where a(26) = A155146(47)^3).
%F A385175 a(n) = A202940(n)^3.
%e A385175 8, 343, and 46656 belong to this list because they are cubes that use 1, 2, and 3 distinct digits, respectively.
%t A385175 Select[Range[10^6]^3,Length[Union[IntegerDigits[#]]]<4&&IntegerDigits[#][[-1]]!=0&] (* _James C. McMahon_, Jun 30 2025 *)
%t A385175 fQ[n_] := Mod[n, 10] > 0 && Length@ Union@ IntegerDigits[n^3] < 4; k = 1; lst = {}; While[k < 1000002, If[ fQ@k, AppendTo[lst, k]]; k++]; lst^3 (* _Robert G. Wilson v_, Jul 10 2025 *)
%Y A385175 Cf. A000578, A030292, A155146, A018884, A202940.
%K A385175 nonn,base
%O A385175 1,2
%A A385175 _Gonzalo Martínez_, Jun 20 2025
%E A385175 a(28) from _Robert G. Wilson v_, Jul 10 2025
%E A385175 a(29) from _David A. Corneth_, Jul 10 2025