This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385175 #22 Jul 10 2025 11:24:07 %S A385175 1,8,27,64,125,216,343,512,729,1331,2744,3375,46656,238328,778688, %T A385175 1030301,5177717,7077888,9393931,700227072,1003003001,44474744007, %U A385175 1000300030001,1000030000300001,1331399339931331,3163316636166336,1000003000003000001,1000000300000030000001,1000000030000000300000001 %N A385175 Cubes using at most three distinct digits, not ending in 0. %C A385175 This sequence has infinitely many terms since (10^m + 1)^3 is a term for all m >= 0. %C A385175 Conjecture: a(26) = 3163316636166336 is the largest term with nonzero digits (See comments of A030294 and the data of A155146, where a(26) = A155146(47)^3). %F A385175 a(n) = A202940(n)^3. %e A385175 8, 343, and 46656 belong to this list because they are cubes that use 1, 2, and 3 distinct digits, respectively. %t A385175 Select[Range[10^6]^3,Length[Union[IntegerDigits[#]]]<4&&IntegerDigits[#][[-1]]!=0&] (* _James C. McMahon_, Jun 30 2025 *) %t A385175 fQ[n_] := Mod[n, 10] > 0 && Length@ Union@ IntegerDigits[n^3] < 4; k = 1; lst = {}; While[k < 1000002, If[ fQ@k, AppendTo[lst, k]]; k++]; lst^3 (* _Robert G. Wilson v_, Jul 10 2025 *) %Y A385175 Cf. A000578, A030292, A155146, A018884, A202940. %K A385175 nonn,base %O A385175 1,2 %A A385175 _Gonzalo MartÃnez_, Jun 20 2025 %E A385175 a(28) from _Robert G. Wilson v_, Jul 10 2025 %E A385175 a(29) from _David A. Corneth_, Jul 10 2025