A385180 Primes p == 3 (mod 4) such that (p+1) * ord(5,p) / ord(2+-i,p) is divisible by 4. Here ord(a,m) is the multiplicative order of a modulo m.
331, 571, 599, 691, 839, 919, 971, 1039, 1051, 1171, 1279, 1291, 1319, 1399, 1439, 1451, 1571, 1759, 1879, 2131, 2411, 2879, 2971, 3079, 3251, 3331, 3491, 3571, 3691, 3851, 4051, 4079, 4091, 4211, 4519, 4639, 4651, 4679, 4691, 4759, 4919, 4931, 5051, 5119, 5171, 5279, 5479, 5519, 5531
Offset: 1
Examples
571 is a term since the multiplicative order of 2+-i modulo 571 is 40755, and (572*ord(5,571))/40755 = 4 is divisible by 4.
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Crossrefs
Programs
-
PARI
quot(p) = my(z = znorder(Mod(5,p)), d = divisors((p+1)*z)); for(i=1, #d, if(Mod([2,-1;1,2],p)^d[i] == 1, return((p+1)*z/d[i]))) \\ for a prime p == 3 (mod 4), returns (p+1) * ord(5,p) / ord(2+-i, p) isA385180(p) = isprime(p) && p%4==3 && quot(p)%4==0
Comments