This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A385182 #27 Jul 10 2025 00:14:03 %S A385182 5,7,9,11,11,13,14,15,17,17,19,19,20,21,23,23,23,25,26,27,27,29,29,29, %T A385182 31,31,32,33,34,35,35,35,37,38,39,39,39,41,41,41,43,43,44,44,45,47,47, %U A385182 47,47,49,49,50,51,51,53,53,53,54,55,55,55,56,57,59,59 %N A385182 Values of u in the quartets (1,u,v,w); i.e., values of u for solutions to (1+u) = v*(v+w), in positive integers, with v>1, sorted by nondecreasing values of u; see Comments. %C A385182 A 4-tuple (m,u,v,w) is a quartet if m,u,v,w are positive integers such that m<v and m*(m+u) = v*(v+w), with the values of u in nondecreasing order. When there is more than one solution for given m and u, the values of v are arranged in increasing order. Here, m=1. %C A385182 If m is a prime, then (u,v,w) = (m+2,m+1,m-1) is the first solution (in the defined ordering of triples). %C A385182 u >= 1 appears A056924(u+1)-1 times. - _Pontus von Brömssen_, Jul 06 2025 %e A385182 First 30 quartets (1,u,v,w): %e A385182 m u v w %e A385182 1 5 2 1 %e A385182 1 7 2 2 %e A385182 1 9 2 3 %e A385182 1 11 2 4 %e A385182 1 11 3 1 %e A385182 1 13 2 5 %e A385182 1 14 3 2 %e A385182 1 15 2 6 %e A385182 1 17 2 7 %e A385182 1 17 3 3 %e A385182 1 19 2 8 %e A385182 1 19 4 1 %e A385182 1 20 3 4 %e A385182 1 21 2 9 %e A385182 1 23 2 10 %e A385182 1 23 3 5 %e A385182 1 23 4 2 %e A385182 1 25 2 11 %e A385182 1 26 3 6 %e A385182 1 27 2 12 %e A385182 1 27 4 3 %e A385182 1 29 2 13 %e A385182 1 29 3 7 %e A385182 1 29 5 1 %e A385182 1 31 2 14 %e A385182 1 31 4 4 %e A385182 1 32 3 8 %e A385182 1 33 2 15 %e A385182 1 34 5 2 %e A385182 1 35 2 16 %e A385182 1*(1+23) = 2*(2+10) = 3*(3+5) = 4*(4+2), so three of the rows are (1,23,2,10), (1,23,3,5), and (1,23,4,2). %t A385182 Clear[solnsM]; %t A385182 solnsM[m_, max_] := Module[{ans = {}, rhs = {}, u, v, w, lhs, matching}, %t A385182 Do[Do[AppendTo[rhs, {v*(v + w), v, w}], {w, max}], {v, m*(m + max)}]; %t A385182 rhs = GatherBy[rhs, First]; %t A385182 Do[lhs = m*(m + u); matching = Select[rhs, #[[1, 1]] == lhs &]; %t A385182 If[Length[matching] > 0, Do[AppendTo[ans, %t A385182 Map[{m, u, #[[2]], #[[3]]} &, matching[[1]]]], {i, %t A385182 Length[matching]}]], {u, max}]; %t A385182 ans = Flatten[ans, 1]; %t A385182 Select[Union[Map[Sort[{#, RotateLeft[#, 2]}][[1]] &, %t A385182 Sort[Select[DeleteDuplicates[ %t A385182 ans], {#[[1]], #[[2]]} =!= {#[[3]], #[[4]]} &]]]], #[[1]] == m &]]; %t A385182 TableForm[solns = solnsM[1, 140], TableHeadings -> {None, {"m", "u", "v", "w"}}] %t A385182 aa = Flatten[solns] %t A385182 Map[#[[2]] &, solns] (* u, A385182 *) %t A385182 Map[#[[3]] &, solns] (* v, A385183 *) %t A385182 Map[#[[4]] &, solns] (* w, A385184 *) %t A385182 (*_Peter J.C.Moses_, Jun 15 2025*) %Y A385182 Guide to related sequences: %Y A385182 m | u | v | w %Y A385182 --+---------+---------+-------- %Y A385182 1 | A385182 | A385183 | A385184 %Y A385182 2 | A385592 | A385593 | A385594 %Y A385182 3 | A385595 | A385596 | A385597 %Y A385182 4 | A385598 | A385599 | A385600 %Y A385182 --+---------+---------+-------- %Y A385182 Cf. A056924. %K A385182 nonn %O A385182 1,1 %A A385182 _Clark Kimberling_, Jun 23 2025