cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385188 Primes p == 3 (mod 4) such that the multiplicative order of 2+-i modulo p in Gaussian integers (A385165) is not divisible by 2 or 3.

Original entry on oeis.org

599, 691, 1291, 1451, 2411, 3851, 4919, 5051, 5479, 5531, 5879, 6599, 7079, 7691, 8011, 8039, 11491, 13291, 14011, 15091, 15971, 16651, 17359, 18731, 19211, 19531, 20731, 22651, 23971, 24611, 25639, 25679, 26251, 32051, 32359, 32531, 32771, 32971, 35879, 37039, 37571, 38011, 38371
Offset: 1

Views

Author

Jianing Song, Jun 20 2025

Keywords

Comments

Primes p == 3 (mod 4) are precisely the rational primes in the ring of Gaussian integers.
5 is a quadratic residue of integers modulo p for p being a term of this sequence. (See A385165).

Examples

			5479 is a term since (2+-i)^125081 == 1 (mod 5479), and 125081 is divisible by neither 2 nor 3.
		

Crossrefs

Cf. A385165, A385179, A385219 (the actual multiplicative orders).
this sequence < A385169 < A385180 < A385167 < intersection of A122869 and A385168, where Ax < Ay means that Ax is a subsequence of Ay.
Also a subsequence of A385191.

Programs

  • PARI
    ord(p) = my(d = divisors((p+1)*znorder(Mod(5, p)))); for(i=1, #d, if(Mod([2, -1; 1, 2], p)^d[i] == 1, return(d[i]))) \\ for a prime p == 3 (mod 4), returns ord(2+-i, p)
    isA385188(p) = isprime(p) && p%4==3 && ord(p)%2 && ord(p)%3