A385191 Primes p == 3 (mod 4), p > 3 such that 2+-i are 24th powers modulo p.
599, 691, 1039, 1291, 1451, 1759, 2411, 2879, 3079, 3491, 3851, 4519, 4639, 4919, 5051, 5479, 5519, 5531, 5639, 5879, 6011, 6079, 6599, 6719, 7079, 7691, 8011, 8039, 8171, 8731, 9439, 9839, 10799, 11159, 11239, 11411, 11491, 12239, 12799, 13291, 13679, 13759, 13879, 14011, 14639
Offset: 1
Examples
1759 is a term since (2+-i)^((1759^2-1)/24) = (-4)^((31^2-1)/96) = 1048576 == 1 (mod 31). Indeed, the solutions to x^24 == 2+i (mod 1759) are x == {441+580i, -43+860i, -292+683i, -251+779i, -635+872i, 736-648i} X {+-1, +-i} (mod 1759).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
PARI
isA385191(p) = p>3 && isprime(p) && p%4==3 && Mod([2,-1;1,2],p)^((p^2-1)/24) == 1
Comments