A385192 Primes p such that multiplicative order of 5 modulo p is odd.
2, 11, 19, 31, 59, 71, 79, 101, 109, 131, 139, 149, 151, 179, 181, 191, 199, 211, 239, 251, 269, 271, 311, 331, 359, 379, 389, 401, 409, 419, 431, 439, 461, 479, 491, 499, 541, 569, 571, 599, 619, 631, 659, 691, 719, 739, 751, 811, 829, 839, 859, 911, 919, 941, 971, 991
Offset: 1
Examples
101 is a term since 5^25 == 1 (mod 101).
Links
- Jianing Song, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
Select[Prime[Range[200]], OddQ[MultiplicativeOrder[5, #]] &] (* Paolo Xausa, Jun 28 2025 *)
-
PARI
isA385192(p) = isprime(p) && (p!=5) && znorder(Mod(5,p))%2
Comments