cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A385195 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is either 1 or 2.

Original entry on oeis.org

1, 2, 2, 3, 4, 4, 6, 7, 8, 8, 10, 6, 12, 12, 8, 15, 16, 16, 18, 12, 12, 20, 22, 14, 24, 24, 26, 18, 28, 16, 30, 31, 20, 32, 24, 24, 36, 36, 24, 28, 40, 24, 42, 30, 32, 44, 46, 30, 48, 48, 32, 36, 52, 52, 40, 42, 36, 56, 58, 24, 60, 60, 48, 63, 48, 40, 66, 48, 44
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2025

Keywords

Examples

			For n = 6, the greatest divisor of k that is a unitary divisor of 6 for k = 1 to 6 is 1, 2, 3, 2, 1 and 6, respectively. 4 of the values are either 1 or 2, and therefore a(6) = 4.
		

Crossrefs

The unitary analog of A126246 (with respect to the definition "the number of integers k from 1 to n such that gcd(n,k) is either 1 or 2").
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough), this sequence (1 or 2), A385196 (prime), A385197 (noncomposite), A385198 (prime power), A385199 (1 or prime power).

Programs

  • Mathematica
    f[p_, e_] := p^e - 1; f[2, 1] = 2; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100]
  • PARI
    a(n) = {my(f = factor(n)); prod(i = 1, #f~,f[i,1]^f[i,2] - if(f[i,1] == 2 && f[i,2] == 1, 0, 1));}

Formula

Multiplicative with a(p^e) = 2 if p = 2 and e = 1, and p^e - 1 otherwise.
In general, the number of integers k from 1 to n such that ugcd(n, k), the greatest divisor of k that is a unitary divisor of n, is either 1 or a prime power q is a multiplicative function f(n) with f(p^e) = q if p^e = q, and p^e - 1 otherwise.
a(n) = A138191(n) * A047994(n), i.e., a(n) = 2*A047994(n) if n == 2 (mod 4) and A047994(n) otherwise.
In general, the number of integers k from 1 to n such that ugcd(n, k) is either 1 or a prime power q is (q/(q-1))*A047994(n) if q is a unitary divisor of n, and A047994(n) otherwise.
Sum_{k=1..n} a(k) ~ (23/40) * c * n^2, where c = Product_{p prime} (1 - 1/(p*(p+1))) = A065463.
In general, the average order of the number of integers k from 1 to n such that ugcd(n, k) is either 1 or a prime p is ((p^4+p^3-1)/(p^4+p^3-p^2)) * c * n^2 / 2, where c = A065463.