A385196 The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a prime number.
0, 1, 1, 0, 1, 3, 1, 0, 0, 5, 1, 3, 1, 7, 6, 0, 1, 8, 1, 3, 8, 11, 1, 7, 0, 13, 0, 3, 1, 14, 1, 0, 12, 17, 10, 0, 1, 19, 14, 7, 1, 20, 1, 3, 8, 23, 1, 15, 0, 24, 18, 3, 1, 26, 14, 7, 20, 29, 1, 18, 1, 31, 8, 0, 16, 32, 1, 3, 24, 34, 1, 0, 1, 37, 24, 3, 16, 38
Offset: 1
Examples
For n = 6, the greatest divisor of k that is a unitary divisor of 6 for k = 1 to 6 is 1, 2, 3, 2, 1 and 6, respectively. 3 of the values are primes, and therefore a(6) = 3.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
Crossrefs
The unitary analog of A117494.
The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is: A047994 (1), A384048 (squarefree), A384049 (cubefree), A384050 (powerful), A384051 (cubefull), A384052 (square), A384053 (cube), A384054 (exponentially odd), A384055 (odd), A384056 (power of 2), A384057 (3-smooth), A384058 (5-rough), A385195 (1 or 2), this sequence (prime), A385197 (noncomposite), A385198 (prime power), A385199 (1 or prime power).
Programs
-
Mathematica
f[p_, e_] := p^e - 1; a[1] = 0; a[n_] := Module[{fct = FactorInteger[n]}, (Times @@ f @@@ fct)*(Total[Boole[# == 1] & /@ fct[[;; , 2]]/(fct[[;; , 1]] - 1)])]; Array[a, 100]
-
PARI
a(n) = {my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2]-1) * sum(i = 1, #f~, (f[i,2] == 1)/(f[i,1] - 1));}
-
Python
from sympy.ntheory import factorint from sympy import Rational def a(n: int) -> int: if n == 1: return 0 S, P, F = 0, 1, factorint(n) for p, e in F.items(): P *= p**e - 1 if e == 1: S += Rational(1, p - 1) return int(P * S) print([a(n) for n in range(1, 79)]) # Peter Luschny, Jun 22 2025
Formula
The unitary convolution of A047994 (the unitary totient phi) with A010051 (the characteristic function of prime numbers): a(n) = Sum_{d | n, gcd(d, n/d) == 1} A047994(d) * A010051(n/d).
a(n) = uphi(n) * Sum_{p || n} (1/(p-1)), where uphi = A047994, and p || n denotes that p unitarily divides n (i.e., the p-adic valuation of n is 1).
Sum_{k=1..n} a(k) ~ c * n^2 / 2, where c = c1 * c2 = 0.21890744964919019488..., c1 = Product_{p prime}(1 - 1/(p*(p+1))) = A065463, and c2 = Sum_{p prime}((p^2-1)/(p^2*(p^2+p-1))) = 0.31075288978811405615... .